{"title":"Tsirelson空间的粗几何及其应用","authors":"F. Baudier, G. Lancien, T. Schlumprecht","doi":"10.1090/jams/899","DOIUrl":null,"url":null,"abstract":"The main result of this article is a rigidity result pertaining to the spreading model structure for Banach spaces coarsely embeddable into Tsirelson's original space $T^*$. Every Banach space that is coarsely embeddable into $T^*$ must be reflexive and all its spreading models must be isomorphic to $c_0$. Several important consequences follow from our rigidity result. We obtain a coarse version of an influential theorem of Tsirelson: $T^*$ does not coarsely contain $c_0$ nor $\\ell_p$ for $p\\in[1,\\infty)$. We show that there is no infinite dimensional Banach space that coarsely embeds into every infinite dimensional Banach space. In particular, we disprove the conjecture that the separable infinite dimensional Hilbert space coarsely embeds into every infinite dimensional Banach space. The rigidity result follows from a new concentration inequality for Lipschitz maps on the infinite Hamming graphs and taking values in $T^*$, and from the embeddability of the infinite Hamming graphs into Banach spaces that admit spreading models not isomorphic to $c_0$. Also, a purely metric characterization of finite dimensionality is obtained.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"31 1","pages":"699-717"},"PeriodicalIF":3.5000,"publicationDate":"2017-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/jams/899","citationCount":"27","resultStr":"{\"title\":\"The coarse geometry of Tsirelson’s space and applications\",\"authors\":\"F. Baudier, G. Lancien, T. Schlumprecht\",\"doi\":\"10.1090/jams/899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main result of this article is a rigidity result pertaining to the spreading model structure for Banach spaces coarsely embeddable into Tsirelson's original space $T^*$. Every Banach space that is coarsely embeddable into $T^*$ must be reflexive and all its spreading models must be isomorphic to $c_0$. Several important consequences follow from our rigidity result. We obtain a coarse version of an influential theorem of Tsirelson: $T^*$ does not coarsely contain $c_0$ nor $\\\\ell_p$ for $p\\\\in[1,\\\\infty)$. We show that there is no infinite dimensional Banach space that coarsely embeds into every infinite dimensional Banach space. In particular, we disprove the conjecture that the separable infinite dimensional Hilbert space coarsely embeds into every infinite dimensional Banach space. The rigidity result follows from a new concentration inequality for Lipschitz maps on the infinite Hamming graphs and taking values in $T^*$, and from the embeddability of the infinite Hamming graphs into Banach spaces that admit spreading models not isomorphic to $c_0$. Also, a purely metric characterization of finite dimensionality is obtained.\",\"PeriodicalId\":54764,\"journal\":{\"name\":\"Journal of the American Mathematical Society\",\"volume\":\"31 1\",\"pages\":\"699-717\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2017-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1090/jams/899\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jams/899\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jams/899","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The coarse geometry of Tsirelson’s space and applications
The main result of this article is a rigidity result pertaining to the spreading model structure for Banach spaces coarsely embeddable into Tsirelson's original space $T^*$. Every Banach space that is coarsely embeddable into $T^*$ must be reflexive and all its spreading models must be isomorphic to $c_0$. Several important consequences follow from our rigidity result. We obtain a coarse version of an influential theorem of Tsirelson: $T^*$ does not coarsely contain $c_0$ nor $\ell_p$ for $p\in[1,\infty)$. We show that there is no infinite dimensional Banach space that coarsely embeds into every infinite dimensional Banach space. In particular, we disprove the conjecture that the separable infinite dimensional Hilbert space coarsely embeds into every infinite dimensional Banach space. The rigidity result follows from a new concentration inequality for Lipschitz maps on the infinite Hamming graphs and taking values in $T^*$, and from the embeddability of the infinite Hamming graphs into Banach spaces that admit spreading models not isomorphic to $c_0$. Also, a purely metric characterization of finite dimensionality is obtained.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.