Tsirelson空间的粗几何及其应用

IF 3.5 1区 数学 Q1 MATHEMATICS
F. Baudier, G. Lancien, T. Schlumprecht
{"title":"Tsirelson空间的粗几何及其应用","authors":"F. Baudier, G. Lancien, T. Schlumprecht","doi":"10.1090/jams/899","DOIUrl":null,"url":null,"abstract":"The main result of this article is a rigidity result pertaining to the spreading model structure for Banach spaces coarsely embeddable into Tsirelson's original space $T^*$. Every Banach space that is coarsely embeddable into $T^*$ must be reflexive and all its spreading models must be isomorphic to $c_0$. Several important consequences follow from our rigidity result. We obtain a coarse version of an influential theorem of Tsirelson: $T^*$ does not coarsely contain $c_0$ nor $\\ell_p$ for $p\\in[1,\\infty)$. We show that there is no infinite dimensional Banach space that coarsely embeds into every infinite dimensional Banach space. In particular, we disprove the conjecture that the separable infinite dimensional Hilbert space coarsely embeds into every infinite dimensional Banach space. The rigidity result follows from a new concentration inequality for Lipschitz maps on the infinite Hamming graphs and taking values in $T^*$, and from the embeddability of the infinite Hamming graphs into Banach spaces that admit spreading models not isomorphic to $c_0$. Also, a purely metric characterization of finite dimensionality is obtained.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"31 1","pages":"699-717"},"PeriodicalIF":3.5000,"publicationDate":"2017-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/jams/899","citationCount":"27","resultStr":"{\"title\":\"The coarse geometry of Tsirelson’s space and applications\",\"authors\":\"F. Baudier, G. Lancien, T. Schlumprecht\",\"doi\":\"10.1090/jams/899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main result of this article is a rigidity result pertaining to the spreading model structure for Banach spaces coarsely embeddable into Tsirelson's original space $T^*$. Every Banach space that is coarsely embeddable into $T^*$ must be reflexive and all its spreading models must be isomorphic to $c_0$. Several important consequences follow from our rigidity result. We obtain a coarse version of an influential theorem of Tsirelson: $T^*$ does not coarsely contain $c_0$ nor $\\\\ell_p$ for $p\\\\in[1,\\\\infty)$. We show that there is no infinite dimensional Banach space that coarsely embeds into every infinite dimensional Banach space. In particular, we disprove the conjecture that the separable infinite dimensional Hilbert space coarsely embeds into every infinite dimensional Banach space. The rigidity result follows from a new concentration inequality for Lipschitz maps on the infinite Hamming graphs and taking values in $T^*$, and from the embeddability of the infinite Hamming graphs into Banach spaces that admit spreading models not isomorphic to $c_0$. Also, a purely metric characterization of finite dimensionality is obtained.\",\"PeriodicalId\":54764,\"journal\":{\"name\":\"Journal of the American Mathematical Society\",\"volume\":\"31 1\",\"pages\":\"699-717\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2017-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1090/jams/899\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jams/899\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jams/899","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 27

摘要

本文的主要结果是Banach空间可粗嵌入Tsirelson原始空间$T^*$的展开模型结构的一个刚性结果。每个可粗嵌入到$T^*$中的Banach空间都必须是自反的,并且它的所有扩展模型都必须同构于$c_0$。我们的僵化结果带来了几个重要的后果。我们得到了Tsirelson的一个有影响力定理的粗略版本:$T^*$对于$p\in不粗包含$c_0$或$\ell_p$[1,infty)$。我们证明了不存在一个无限维Banach空间可以粗嵌入到每个无限维Banch空间中。特别地,我们反驳了可分离的无限维Hilbert空间粗嵌入到每一个无限维Banach空间中的猜想。刚性结果来自于无限Ham上Lipschitz映射的一个新的集中不等式ming图并取$T^*$中的值,以及从无限Hamming图到Banach空间的可嵌入性,Banach空间允许不同构于$c_0$的扩展模型。此外,还得到了有限维的纯度量特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The coarse geometry of Tsirelson’s space and applications
The main result of this article is a rigidity result pertaining to the spreading model structure for Banach spaces coarsely embeddable into Tsirelson's original space $T^*$. Every Banach space that is coarsely embeddable into $T^*$ must be reflexive and all its spreading models must be isomorphic to $c_0$. Several important consequences follow from our rigidity result. We obtain a coarse version of an influential theorem of Tsirelson: $T^*$ does not coarsely contain $c_0$ nor $\ell_p$ for $p\in[1,\infty)$. We show that there is no infinite dimensional Banach space that coarsely embeds into every infinite dimensional Banach space. In particular, we disprove the conjecture that the separable infinite dimensional Hilbert space coarsely embeds into every infinite dimensional Banach space. The rigidity result follows from a new concentration inequality for Lipschitz maps on the infinite Hamming graphs and taking values in $T^*$, and from the embeddability of the infinite Hamming graphs into Banach spaces that admit spreading models not isomorphic to $c_0$. Also, a purely metric characterization of finite dimensionality is obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信