基于镜像对称的$K3$曲面的辛拓扑

IF 3.5 1区 数学 Q1 MATHEMATICS
Nick Sheridan, I. Smith
{"title":"基于镜像对称的$K3$曲面的辛拓扑","authors":"Nick Sheridan, I. Smith","doi":"10.1090/JAMS/946","DOIUrl":null,"url":null,"abstract":"We study the symplectic topology of certain K3 surfaces (including the \"mirror quartic\" and \"mirror double plane\"), equipped with certain Kahler forms. In particular, we prove that the symplectic Torelli group may be infinitely generated, and derive new constraints on Lagrangian tori. The key input, via homological mirror symmetry, is a result of Bayer and Bridgeland on the autoequivalence group of the derived category of an algebraic K3 surface of Picard rank one.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2017-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/JAMS/946","citationCount":"18","resultStr":"{\"title\":\"Symplectic topology of $K3$ surfaces via mirror symmetry\",\"authors\":\"Nick Sheridan, I. Smith\",\"doi\":\"10.1090/JAMS/946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the symplectic topology of certain K3 surfaces (including the \\\"mirror quartic\\\" and \\\"mirror double plane\\\"), equipped with certain Kahler forms. In particular, we prove that the symplectic Torelli group may be infinitely generated, and derive new constraints on Lagrangian tori. The key input, via homological mirror symmetry, is a result of Bayer and Bridgeland on the autoequivalence group of the derived category of an algebraic K3 surface of Picard rank one.\",\"PeriodicalId\":54764,\"journal\":{\"name\":\"Journal of the American Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2017-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1090/JAMS/946\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/JAMS/946\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/JAMS/946","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 18

摘要

我们研究了具有某些Kahler形式的某些K3曲面(包括“镜像四次曲面”和“镜像双平面”)的辛拓扑。特别地,我们证明了辛Torelli群可以无限生成,并导出了拉格朗日环面上的新约束。通过同源镜像对称的关键输入是Bayer和Bridgeland在Picard秩为1的代数K3曲面的导出范畴的自等价群上的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symplectic topology of $K3$ surfaces via mirror symmetry
We study the symplectic topology of certain K3 surfaces (including the "mirror quartic" and "mirror double plane"), equipped with certain Kahler forms. In particular, we prove that the symplectic Torelli group may be infinitely generated, and derive new constraints on Lagrangian tori. The key input, via homological mirror symmetry, is a result of Bayer and Bridgeland on the autoequivalence group of the derived category of an algebraic K3 surface of Picard rank one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信