非一致传递图上渗流的非唯一性和平均场临界性

IF 3.5 1区 数学 Q1 MATHEMATICS
Tom Hutchcroft
{"title":"非一致传递图上渗流的非唯一性和平均场临界性","authors":"Tom Hutchcroft","doi":"10.1090/jams/953","DOIUrl":null,"url":null,"abstract":"<p>We study Bernoulli bond percolation on nonunimodular quasi-transitive graphs, and more generally graphs whose automorphism group has a nonunimodular quasi-transitive subgroup. We prove that percolation on any such graph has a nonempty phase in which there are infinite <italic>light</italic> clusters, which implies the existence of a nonempty phase in which there are <italic>infinitely many</italic> infinite clusters. That is, we show that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p Subscript c Baseline greater-than p Subscript h Baseline less-than-or-equal-to p Subscript u\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>p</mml:mi>\n <mml:mi>c</mml:mi>\n </mml:msub>\n <mml:mo>></mml:mo>\n <mml:msub>\n <mml:mi>p</mml:mi>\n <mml:mi>h</mml:mi>\n </mml:msub>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:msub>\n <mml:mi>p</mml:mi>\n <mml:mi>u</mml:mi>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">p_c>p_h \\leq p_u</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for any such graph. This answers a question of Häggström, Peres, and Schonmann (1999), and verifies the nonunimodular case of a well-known conjecture of Benjamini and Schramm (1996). We also prove that the triangle condition holds at criticality on any such graph, which implies that various critical exponents exist and take their mean-field values.</p>\n\n<p>All our results apply, for example, to the product <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T Subscript k Baseline times double-struck upper Z Superscript d\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>T</mml:mi>\n <mml:mi>k</mml:mi>\n </mml:msub>\n <mml:mo>×<!-- × --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Z</mml:mi>\n </mml:mrow>\n <mml:mi>d</mml:mi>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">T_k\\times \\mathbb {Z}^d</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\">\n <mml:semantics>\n <mml:mi>k</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">k</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-regular tree with <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Z Superscript d\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Z</mml:mi>\n </mml:mrow>\n <mml:mi>d</mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {Z}^d</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k greater-than-or-equal-to 3\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>k</mml:mi>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>3</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">k\\geq 3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d greater-than-or-equal-to 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>d</mml:mi>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">d \\geq 1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, for which these results were previously known only for large <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\">\n <mml:semantics>\n <mml:mi>k</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">k</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Furthermore, our methods also enable us to establish the basic topological features of the phase diagram for <italic>anisotropic</italic> percolation on such products, in which tree edges and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Z Superscript d\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Z</mml:mi>\n </mml:mrow>\n <mml:mi>d</mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {Z}^d</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> edges are given different retention probabilities. These features had only previously been established for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d equals 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>d</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">d=1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\">\n <mml:semantics>\n <mml:mi>k</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">k</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> large.</p>","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2017-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/jams/953","citationCount":"27","resultStr":"{\"title\":\"Nonuniqueness and mean-field criticality for percolation on nonunimodular transitive graphs\",\"authors\":\"Tom Hutchcroft\",\"doi\":\"10.1090/jams/953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study Bernoulli bond percolation on nonunimodular quasi-transitive graphs, and more generally graphs whose automorphism group has a nonunimodular quasi-transitive subgroup. We prove that percolation on any such graph has a nonempty phase in which there are infinite <italic>light</italic> clusters, which implies the existence of a nonempty phase in which there are <italic>infinitely many</italic> infinite clusters. That is, we show that <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p Subscript c Baseline greater-than p Subscript h Baseline less-than-or-equal-to p Subscript u\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>p</mml:mi>\\n <mml:mi>c</mml:mi>\\n </mml:msub>\\n <mml:mo>></mml:mo>\\n <mml:msub>\\n <mml:mi>p</mml:mi>\\n <mml:mi>h</mml:mi>\\n </mml:msub>\\n <mml:mo>≤<!-- ≤ --></mml:mo>\\n <mml:msub>\\n <mml:mi>p</mml:mi>\\n <mml:mi>u</mml:mi>\\n </mml:msub>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">p_c>p_h \\\\leq p_u</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> for any such graph. This answers a question of Häggström, Peres, and Schonmann (1999), and verifies the nonunimodular case of a well-known conjecture of Benjamini and Schramm (1996). We also prove that the triangle condition holds at criticality on any such graph, which implies that various critical exponents exist and take their mean-field values.</p>\\n\\n<p>All our results apply, for example, to the product <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper T Subscript k Baseline times double-struck upper Z Superscript d\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>T</mml:mi>\\n <mml:mi>k</mml:mi>\\n </mml:msub>\\n <mml:mo>×<!-- × --></mml:mo>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi>\\n </mml:mrow>\\n <mml:mi>d</mml:mi>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">T_k\\\\times \\\\mathbb {Z}^d</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of a <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"k\\\">\\n <mml:semantics>\\n <mml:mi>k</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">k</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-regular tree with <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper Z Superscript d\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi>\\n </mml:mrow>\\n <mml:mi>d</mml:mi>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {Z}^d</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> for <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"k greater-than-or-equal-to 3\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>k</mml:mi>\\n <mml:mo>≥<!-- ≥ --></mml:mo>\\n <mml:mn>3</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">k\\\\geq 3</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"d greater-than-or-equal-to 1\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>d</mml:mi>\\n <mml:mo>≥<!-- ≥ --></mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">d \\\\geq 1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, for which these results were previously known only for large <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"k\\\">\\n <mml:semantics>\\n <mml:mi>k</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">k</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. Furthermore, our methods also enable us to establish the basic topological features of the phase diagram for <italic>anisotropic</italic> percolation on such products, in which tree edges and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper Z Superscript d\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi>\\n </mml:mrow>\\n <mml:mi>d</mml:mi>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {Z}^d</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> edges are given different retention probabilities. These features had only previously been established for <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"d equals 1\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>d</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">d=1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"k\\\">\\n <mml:semantics>\\n <mml:mi>k</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">k</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> large.</p>\",\"PeriodicalId\":54764,\"journal\":{\"name\":\"Journal of the American Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2017-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1090/jams/953\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jams/953\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jams/953","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 27

摘要

我们研究了非一致拟传递图上的Bernoulli键渗流,以及更一般的自同构群具有非一致拟转移子群的图。我们证明了任何这样的图上的渗流都有一个非空相,其中有无限个光团簇,这意味着存在一个非空相,其中存在无限多个无限团簇。也就是说,我们证明了对于任何这样的图,p c>p h≤p u p_c>p h\leq p_u。这回答了Häggström、Peres和Schonmann(1999)的一个问题,并验证了Benjamini和Schramm(1996)一个著名猜想的非一致性情况。我们还证明了在任何这样的图上,三角形条件在临界时成立,这意味着存在各种临界指数,并取其平均场值。例如,我们的所有结果都适用于k≥3k\geq3和d≥1d\geq1的具有Z d \mathbb{Z}^d的k-正则树的乘积Tk×,对于这些结果先前仅对于大的k k是已知的。此外,我们的方法还使我们能够在这类乘积上建立各向异性渗流相图的基本拓扑特征,其中树边和Z d \mathbb{Z}^d边被赋予不同的保留概率。这些特征以前只是针对d=1 d=1,k k大而建立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonuniqueness and mean-field criticality for percolation on nonunimodular transitive graphs

We study Bernoulli bond percolation on nonunimodular quasi-transitive graphs, and more generally graphs whose automorphism group has a nonunimodular quasi-transitive subgroup. We prove that percolation on any such graph has a nonempty phase in which there are infinite light clusters, which implies the existence of a nonempty phase in which there are infinitely many infinite clusters. That is, we show that p c > p h p u p_c>p_h \leq p_u for any such graph. This answers a question of Häggström, Peres, and Schonmann (1999), and verifies the nonunimodular case of a well-known conjecture of Benjamini and Schramm (1996). We also prove that the triangle condition holds at criticality on any such graph, which implies that various critical exponents exist and take their mean-field values.

All our results apply, for example, to the product T k × Z d T_k\times \mathbb {Z}^d of a k k -regular tree with Z d \mathbb {Z}^d for k 3 k\geq 3 and d 1 d \geq 1 , for which these results were previously known only for large  k k . Furthermore, our methods also enable us to establish the basic topological features of the phase diagram for anisotropic percolation on such products, in which tree edges and Z d \mathbb {Z}^d edges are given different retention probabilities. These features had only previously been established for d = 1 d=1 , k k large.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信