Pramod N. Achar, Shotaro Makisumi, S. Riche, G. Williamson
{"title":"Kac-Moody群的Koszul对偶与倾斜模的性质","authors":"Pramod N. Achar, Shotaro Makisumi, S. Riche, G. Williamson","doi":"10.1090/JAMS/905","DOIUrl":null,"url":null,"abstract":"<p>We establish a character formula for indecomposable tilting modules for connected reductive groups in characteristic <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script l\">\n <mml:semantics>\n <mml:mi>ℓ<!-- ℓ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\ell</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in terms of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script l\">\n <mml:semantics>\n <mml:mi>ℓ<!-- ℓ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\ell</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-Kazhdan–Lusztig polynomials, for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script l greater-than h\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>ℓ<!-- ℓ --></mml:mi>\n <mml:mo>></mml:mo>\n <mml:mi>h</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\ell > h</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> the Coxeter number. Using results of Andersen, one may deduce a character formula for simple modules if <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script l greater-than-or-equal-to 2 h minus 2\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>ℓ<!-- ℓ --></mml:mi>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>2</mml:mn>\n <mml:mi>h</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\ell \\ge 2h-2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Our results are a consequence of an extension to modular coefficients of a monoidal Koszul duality equivalence established by Bezrukavnikov and Yun.</p>","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"1 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/JAMS/905","citationCount":"77","resultStr":"{\"title\":\"Koszul duality for Kac–Moody groups and characters of tilting modules\",\"authors\":\"Pramod N. Achar, Shotaro Makisumi, S. Riche, G. Williamson\",\"doi\":\"10.1090/JAMS/905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We establish a character formula for indecomposable tilting modules for connected reductive groups in characteristic <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script l\\\">\\n <mml:semantics>\\n <mml:mi>ℓ<!-- ℓ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\ell</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> in terms of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script l\\\">\\n <mml:semantics>\\n <mml:mi>ℓ<!-- ℓ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\ell</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-Kazhdan–Lusztig polynomials, for <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script l greater-than h\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>ℓ<!-- ℓ --></mml:mi>\\n <mml:mo>></mml:mo>\\n <mml:mi>h</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\ell > h</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> the Coxeter number. Using results of Andersen, one may deduce a character formula for simple modules if <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script l greater-than-or-equal-to 2 h minus 2\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>ℓ<!-- ℓ --></mml:mi>\\n <mml:mo>≥<!-- ≥ --></mml:mo>\\n <mml:mn>2</mml:mn>\\n <mml:mi>h</mml:mi>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>2</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\ell \\\\ge 2h-2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. Our results are a consequence of an extension to modular coefficients of a monoidal Koszul duality equivalence established by Bezrukavnikov and Yun.</p>\",\"PeriodicalId\":54764,\"journal\":{\"name\":\"Journal of the American Mathematical Society\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1090/JAMS/905\",\"citationCount\":\"77\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/JAMS/905\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/JAMS/905","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 77
摘要
我们建立了一个关于特征为r \ well的连通约化群的不可分解倾斜模的特征公式,它是用r \ well -Kazhdan-Lusztig多项式表示的,对于r \ well - h \ well - > h为Coxeter数。利用Andersen的结果,我们可以推导出当r≥2h−2 \ well \ge 2h-2时简单模的特征公式。我们的结果是将Bezrukavnikov和Yun建立的一元Koszul对偶等价推广到模系数的结果。
Koszul duality for Kac–Moody groups and characters of tilting modules
We establish a character formula for indecomposable tilting modules for connected reductive groups in characteristic ℓ\ell in terms of ℓ\ell-Kazhdan–Lusztig polynomials, for ℓ>h\ell > h the Coxeter number. Using results of Andersen, one may deduce a character formula for simple modules if ℓ≥2h−2\ell \ge 2h-2. Our results are a consequence of an extension to modular coefficients of a monoidal Koszul duality equivalence established by Bezrukavnikov and Yun.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.