Journal of the American Mathematical Society最新文献

筛选
英文 中文
On Sarkozy’s theorem for shifted primes 关于移位素数的萨科齐定理
1区 数学
Journal of the American Mathematical Society Pub Date : 2023-09-28 DOI: 10.1090/jams/1036
Ben Green
{"title":"On Sarkozy’s theorem for shifted primes","authors":"Ben Green","doi":"10.1090/jams/1036","DOIUrl":"https://doi.org/10.1090/jams/1036","url":null,"abstract":"Suppose that <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A subset-of StartSet 1 comma ellipsis comma upper N EndSet\"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo>⊂<!-- ⊂ --></mml:mo> <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo>,</mml:mo> <mml:mi>N</mml:mi> <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">A subset {1,dots , N}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has no two elements differing by <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p minus 1\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">p-1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> prime. Then <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartAbsoluteValue upper A EndAbsoluteValue much-less-than upper N Superscript 1 minus c\"> <mml:semantics> <mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>A</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mo>≪<!-- ≪ --></mml:mo> <mml:msup> <mml:mi>N</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>1</mml:mn> <mml:mo>−<!-- − --></mml:mo> <mml:mi>c</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">|A| ll N^{1 - c}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135342995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finiteness for Hecke algebras of 𝑝-adic groups 𝑝-adic群Hecke代数的有限性
1区 数学
Journal of the American Mathematical Society Pub Date : 2023-09-13 DOI: 10.1090/jams/1034
Jean-Francois Dat, David Helm, Robert Kurinczuk, Gilbert Moss
{"title":"Finiteness for Hecke algebras of 𝑝-adic groups","authors":"Jean-Francois Dat, David Helm, Robert Kurinczuk, Gilbert Moss","doi":"10.1090/jams/1034","DOIUrl":"https://doi.org/10.1090/jams/1034","url":null,"abstract":"Let &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;G&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;G&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; be a reductive group over a non-archimedean local field &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;F&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;F&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; of residue characteristic &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;p&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;p&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;. We prove that the Hecke algebras of &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G left-parenthesis upper F right-parenthesis\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;G&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;F&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;G(F)&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;, with coefficients in any noetherian &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Z Subscript script l\"&gt; &lt;mml:semantics&gt; &lt;mml:msub&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mi mathvariant=\"double-struck\"&gt;Z&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mi&gt;ℓ&lt;!-- ℓ --&gt;&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;/mml:msub&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;mathbb {Z}_{ell }&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;-algebra &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;R&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;R&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; with &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script l not-equals p\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;ℓ&lt;!-- ℓ --&gt;&lt;/mml:mi&gt; &lt;mml:mo&gt;≠&lt;!-- ≠ --&gt;&lt;/mml:mo&gt; &lt;mml:mi&gt;p&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;ell neq p&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;, are finitely generated modules over their centers, and that these centers are finitely generated &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;R&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;R&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;-algebras. Following Bernstein’s original strategy, we then deduce that “second adjointness” holds for smooth representati","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134989486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cartan actions of higher rank abelian groups and their classification 高阶阿贝尔群的Cartan作用及其分类
1区 数学
Journal of the American Mathematical Society Pub Date : 2023-08-31 DOI: 10.1090/jams/1033
Ralf Spatzier, Kurt Vinhage
{"title":"Cartan actions of higher rank abelian groups and their classification","authors":"Ralf Spatzier, Kurt Vinhage","doi":"10.1090/jams/1033","DOIUrl":"https://doi.org/10.1090/jams/1033","url":null,"abstract":"We study <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript k Baseline times double-struck upper Z Superscript script l\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mi>k</mml:mi> </mml:msup> <mml:mo>×<!-- × --></mml:mo> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:mi>ℓ<!-- ℓ --></mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">mathbb {R}^k times mathbb {Z}^ell</mml:annotation> </mml:semantics> </mml:math> </inline-formula> actions on arbitrary compact manifolds with a projectively dense set of Anosov elements and 1-dimensional coarse Lyapunov foliations. Such actions are called totally Cartan actions. We completely classify such actions as built from low-dimensional Anosov flows and diffeomorphisms and affine actions, verifying the Katok-Spatzier conjecture for this class. This is achieved by introducing a new tool, the action of a dynamically defined topological group describing paths in coarse Lyapunov foliations, and understanding its generators and relations. We obtain applications to the Zimmer program.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135782996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Bordered Floer homology for manifolds with torus boundary via immersed curves 经浸没曲线的环面边界流形的有边花同调性
1区 数学
Journal of the American Mathematical Society Pub Date : 2023-08-23 DOI: 10.1090/jams/1029
Jonathan Hanselman, Jacob Rasmussen, Liam Watson
{"title":"Bordered Floer homology for manifolds with torus boundary via immersed curves","authors":"Jonathan Hanselman, Jacob Rasmussen, Liam Watson","doi":"10.1090/jams/1029","DOIUrl":"https://doi.org/10.1090/jams/1029","url":null,"abstract":"This paper gives a geometric interpretation of bordered Heegaard Floer homology for manifolds with torus boundary. If &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;M&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;M&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; is such a manifold, we show that the type D structure &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove upper C upper F upper D With caret left-parenthesis upper M right-parenthesis\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mover&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;C&lt;/mml:mi&gt; &lt;mml:mi&gt;F&lt;/mml:mi&gt; &lt;mml:mi&gt;D&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mo&gt;^&lt;!-- ^ --&gt;&lt;/mml:mo&gt; &lt;/mml:mover&gt; &lt;/mml:mrow&gt; &lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;M&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;widehat {CFD}(M)&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; may be viewed as a set of immersed curves decorated with local systems in &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"partial-differential upper M\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:mi mathvariant=\"normal\"&gt;∂&lt;!-- ∂ --&gt;&lt;/mml:mi&gt; &lt;mml:mi&gt;M&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;partial M&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;. These curves-with-decoration are invariants of the underlying three-manifold up to regular homotopy of the curves and isomorphism of the local systems. Given two such manifolds and a homeomorphism &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;h&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;h&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; between the boundary tori, the Heegaard Floer homology of the closed manifold obtained by gluing with &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;h&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;h&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; is obtained from the Lagrangian intersection Floer homology of the curve-sets. This machinery has several applications: We establish that the dimension of &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove upper H upper F With caret\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mover&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;H&lt;/mml:mi&gt; &lt;mml:mi&gt;F&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mo&gt;^&lt;!-- ^ --&gt;&lt;/mml:mo&gt; &lt;/mml:mover&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;widehat {HF}&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; decreases under a certain class of degree one map","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135520700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 25
Geometric wave-front set may not be a singleton 几何波前集可能不是一个单集
1区 数学
Journal of the American Mathematical Society Pub Date : 2023-08-15 DOI: 10.1090/jams/1031
Cheng-Chiang Tsai
{"title":"Geometric wave-front set may not be a singleton","authors":"Cheng-Chiang Tsai","doi":"10.1090/jams/1031","DOIUrl":"https://doi.org/10.1090/jams/1031","url":null,"abstract":"We show that the geometric wave-front set of specific half-integral-depth supercuspidal representations of ramified <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-adic unitary groups is not a singleton.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135063301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Infinite sumsets in sets with positive density 正密度集合中的无穷集合
1区 数学
Journal of the American Mathematical Society Pub Date : 2023-08-11 DOI: 10.1090/jams/1030
Bryna Kra, Joel Moreira, Florian Richter, Donald Robertson
{"title":"Infinite sumsets in sets with positive density","authors":"Bryna Kra, Joel Moreira, Florian Richter, Donald Robertson","doi":"10.1090/jams/1030","DOIUrl":"https://doi.org/10.1090/jams/1030","url":null,"abstract":"Motivated by questions asked by Erdős, we prove that any set <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A subset-of double-struck upper N\"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo>⊂<!-- ⊂ --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">N</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">Asubset mathbb {N}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with positive upper density contains, for any <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k element-of double-struck upper N\"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">N</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">kin mathbb {N}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, a sumset <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B 1 plus midline-horizontal-ellipsis plus upper B Subscript k\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>+</mml:mo> <mml:mo>⋯<!-- ⋯ --></mml:mo> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>B</mml:mi> <mml:mi>k</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">B_1+cdots +B_k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B 1\"> <mml:semantics> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:annotation encoding=\"application/x-tex\">B_1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, …, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B Subscript k Baseline subset-of double-struck upper N\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>B</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:mo>⊂<!-- ⊂ --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">N</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">B_ksubset mathbb {N}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are infinite. Our proof uses ergodic theory and relies on structural results for measure preserving systems. Our techniques are new, even for the previously known case of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k equals 2\"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">k=2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135396765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A proof of the Kahn–Kalai conjecture Kahn–Kalai猜想的一个证明
IF 3.9 1区 数学
Journal of the American Mathematical Society Pub Date : 2023-08-07 DOI: 10.1090/jams/1028
Jin-woo Park, Huye^n Pham
{"title":"A proof of the Kahn–Kalai conjecture","authors":"Jin-woo Park, Huye^n Pham","doi":"10.1090/jams/1028","DOIUrl":"https://doi.org/10.1090/jams/1028","url":null,"abstract":"&lt;p&gt;Proving the “expectation-threshold” conjecture of Kahn and Kalai [Combin. Probab. Comput. 16 (2007), pp. 495–502], we show that for any increasing property &lt;inline-formula content-type=\"math/mathml\"&gt;\u0000&lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper F\"&gt;\u0000 &lt;mml:semantics&gt;\u0000 &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt;\u0000 &lt;mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\"&gt;F&lt;/mml:mi&gt;\u0000 &lt;/mml:mrow&gt;\u0000 &lt;mml:annotation encoding=\"application/x-tex\"&gt;mathcal {F}&lt;/mml:annotation&gt;\u0000 &lt;/mml:semantics&gt;\u0000&lt;/mml:math&gt;\u0000&lt;/inline-formula&gt; on a finite set &lt;inline-formula content-type=\"math/mathml\"&gt;\u0000&lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\"&gt;\u0000 &lt;mml:semantics&gt;\u0000 &lt;mml:mi&gt;X&lt;/mml:mi&gt;\u0000 &lt;mml:annotation encoding=\"application/x-tex\"&gt;X&lt;/mml:annotation&gt;\u0000 &lt;/mml:semantics&gt;\u0000&lt;/mml:math&gt;\u0000&lt;/inline-formula&gt;, &lt;disp-formula content-type=\"math/mathml\"&gt;\u0000[\u0000&lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p Subscript c Baseline left-parenthesis script upper F right-parenthesis equals upper O left-parenthesis q left-parenthesis script upper F right-parenthesis log script l left-parenthesis script upper F right-parenthesis right-parenthesis comma\"&gt;\u0000 &lt;mml:semantics&gt;\u0000 &lt;mml:mrow&gt;\u0000 &lt;mml:msub&gt;\u0000 &lt;mml:mi&gt;p&lt;/mml:mi&gt;\u0000 &lt;mml:mi&gt;c&lt;/mml:mi&gt;\u0000 &lt;/mml:msub&gt;\u0000 &lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt;\u0000 &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt;\u0000 &lt;mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\"&gt;F&lt;/mml:mi&gt;\u0000 &lt;/mml:mrow&gt;\u0000 &lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt;\u0000 &lt;mml:mo&gt;=&lt;/mml:mo&gt;\u0000 &lt;mml:mi&gt;O&lt;/mml:mi&gt;\u0000 &lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt;\u0000 &lt;mml:mi&gt;q&lt;/mml:mi&gt;\u0000 &lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt;\u0000 &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt;\u0000 &lt;mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\"&gt;F&lt;/mml:mi&gt;\u0000 &lt;/mml:mrow&gt;\u0000 &lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt;\u0000 &lt;mml:mi&gt;log&lt;/mml:mi&gt;\u0000 &lt;mml:mo&gt;⁡&lt;!-- ⁡ --&gt;&lt;/mml:mo&gt;\u0000 &lt;mml:mi&gt;ℓ&lt;!-- ℓ --&gt;&lt;/mml:mi&gt;\u0000 &lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt;\u0000 &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt;\u0000 &lt;mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\"&gt;F&lt;/mml:mi&gt;\u0000 &lt;/mml:mrow&gt;\u0000 &lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt;\u0000 &lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt;\u0000 &lt;mml:mo&gt;,&lt;/mml:mo&gt;\u0000 &lt;/mml:mrow&gt;\u0000 &lt;mml:annotation encoding=\"application/x-tex\"&gt;p_c(mathcal {F})=O(q(mathcal {F})log ell (mathcal {F})),&lt;/mml:annotation&gt;\u0000 &lt;/mml:semantics&gt;\u0000&lt;/mml:math&gt;\u0000]\u0000&lt;/disp-formula&gt; where &lt;inline-formula content-type=\"math/mathml\"&gt;\u0000&lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p Subscript c Baseline left-parenthesis script upper F right-parenthesis\"&gt;\u0000 &lt;mml:semantics&gt;\u0000 &lt;mml:mrow&gt;\u0000 &lt;mml:msub&gt;\u0000 &lt;mml:mi&gt;p&lt;/mml:mi&gt;\u0000 &lt;mml:mi&gt;c&lt;/mml:mi&gt;\u0000 &lt;/mml:msub&gt;\u0000 &lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt;\u0000 &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt;\u0000 &lt;mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\"&gt;F&lt;/mml:mi&gt;\u0000 &lt;/mml:mrow&gt;\u0000 &lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt;\u0000 &lt;/mml","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"1 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41661492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
The 𝑝-adic Kakeya conjecture 𝑝Kakeya猜想
1区 数学
Journal of the American Mathematical Society Pub Date : 2023-05-17 DOI: 10.1090/jams/1021
Bodan Arsovski
{"title":"The 𝑝-adic Kakeya conjecture","authors":"Bodan Arsovski","doi":"10.1090/jams/1021","DOIUrl":"https://doi.org/10.1090/jams/1021","url":null,"abstract":"We prove the natural analogue of the classical Kakeya conjecture over the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-adic numbers.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"199 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135813111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
On the meromorphic continuation of Eisenstein series 关于爱森斯坦级数的亚纯延拓
1区 数学
Journal of the American Mathematical Society Pub Date : 2023-04-27 DOI: 10.1090/jams/1020
Joseph Bernstein, Erez Lapid
{"title":"On the meromorphic continuation of Eisenstein series","authors":"Joseph Bernstein, Erez Lapid","doi":"10.1090/jams/1020","DOIUrl":"https://doi.org/10.1090/jams/1020","url":null,"abstract":"Eisenstein series are ubiquitous in the theory of automorphic forms. The traditional proofs of the meromorphic continuation of Eisenstein series, due to Selberg and Langlands, start with cuspidal Eisenstein series as a special case, and deduce the general case from spectral theory. We present a “soft” proof which relies only on rudimentary Fredholm theory (needed only in the number field case). It is valid for Eisenstein series induced from an arbitrary automorphic form. The proof relies on the principle of meromorphic continuation. It is close in spirit to Selberg’s later proofs.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"124 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136086654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
A solution to Erdős and Hajnal’s odd cycle problem 解决Erdős和Hajnal的奇循环问题
1区 数学
Journal of the American Mathematical Society Pub Date : 2023-03-31 DOI: 10.1090/jams/1018
Hong Liu, Richard Montgomery
{"title":"A solution to Erdős and Hajnal’s odd cycle problem","authors":"Hong Liu, Richard Montgomery","doi":"10.1090/jams/1018","DOIUrl":"https://doi.org/10.1090/jams/1018","url":null,"abstract":"In 1981, Erdős and Hajnal asked whether the sum of the reciprocals of the odd cycle lengths in a graph with infinite chromatic number is necessarily infinite. Let &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper C left-parenthesis upper G right-parenthesis\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\"&gt;C&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;G&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;mathcal {C}(G)&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; be the set of cycle lengths in a graph &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;G&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;G&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; and let &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper C Subscript normal o normal d normal d Baseline left-parenthesis upper G right-parenthesis\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:msub&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\"&gt;C&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mi mathvariant=\"normal\"&gt;o&lt;/mml:mi&gt; &lt;mml:mi mathvariant=\"normal\"&gt;d&lt;/mml:mi&gt; &lt;mml:mi mathvariant=\"normal\"&gt;d&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;/mml:mrow&gt; &lt;/mml:msub&gt; &lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;G&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;mathcal {C}_{mathrm {odd}}(G)&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; be the set of odd numbers in &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper C left-parenthesis upper G right-parenthesis\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:mrow class=\"MJX-TeXAtom-ORD\"&gt; &lt;mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\"&gt;C&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;G&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;mathcal {C}(G)&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;. We prove that, if &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;G&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;G&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; has chromatic number &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;k&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;k&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;, then &lt;inline-","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135822249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信