{"title":"A solution to Erdős and Hajnal’s odd cycle problem","authors":"Hong Liu, Richard Montgomery","doi":"10.1090/jams/1018","DOIUrl":null,"url":null,"abstract":"In 1981, Erdős and Hajnal asked whether the sum of the reciprocals of the odd cycle lengths in a graph with infinite chromatic number is necessarily infinite. Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper C left-parenthesis upper G right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">C</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {C}(G)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the set of cycle lengths in a graph <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper C Subscript normal o normal d normal d Baseline left-parenthesis upper G right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">C</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"normal\">o</mml:mi> <mml:mi mathvariant=\"normal\">d</mml:mi> <mml:mi mathvariant=\"normal\">d</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {C}_{\\mathrm {odd}}(G)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the set of odd numbers in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper C left-parenthesis upper G right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">C</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {C}(G)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We prove that, if <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has chromatic number <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma-summation Underscript script l element-of script upper C Subscript normal o normal d normal d Baseline left-parenthesis upper G right-parenthesis Endscripts 1 slash script l greater-than-or-equal-to left-parenthesis 1 slash 2 minus o Subscript k Baseline left-parenthesis 1 right-parenthesis right-parenthesis log k\"> <mml:semantics> <mml:mrow> <mml:munder> <mml:mo>∑<!-- ∑ --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">C</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"normal\">o</mml:mi> <mml:mi mathvariant=\"normal\">d</mml:mi> <mml:mi mathvariant=\"normal\">d</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> </mml:munder> <mml:mn>1</mml:mn> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>1</mml:mn> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> <mml:mo>−<!-- − --></mml:mo> <mml:msub> <mml:mi>o</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mi>log</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mi>k</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\sum _{\\ell \\in \\mathcal {C}_{\\mathrm {odd}}(G)}1/\\ell \\geq (1/2-o_k(1))\\log k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This solves Erdős and Hajnal’s odd cycle problem, and, furthermore, this bound is asymptotically optimal. In 1984, Erdős asked whether there is some <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\"> <mml:semantics> <mml:mi>d</mml:mi> <mml:annotation encoding=\"application/x-tex\">d</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that each graph with chromatic number at least <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\"> <mml:semantics> <mml:mi>d</mml:mi> <mml:annotation encoding=\"application/x-tex\">d</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (or perhaps even only average degree at least <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\"> <mml:semantics> <mml:mi>d</mml:mi> <mml:annotation encoding=\"application/x-tex\">d</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) has a cycle whose length is a power of 2. We show that an average degree condition is sufficient for this problem, solving it with methods that apply to a wide range of sequences in addition to the powers of 2. Finally, we use our methods to show that, for every <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, there is some <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\"> <mml:semantics> <mml:mi>d</mml:mi> <mml:annotation encoding=\"application/x-tex\">d</mml:annotation> </mml:semantics> </mml:math> </inline-formula> so that every graph with average degree at least <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\"> <mml:semantics> <mml:mi>d</mml:mi> <mml:annotation encoding=\"application/x-tex\">d</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has a subdivision of the complete graph <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K Subscript k\"> <mml:semantics> <mml:msub> <mml:mi>K</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">K_k</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in which each edge is subdivided the same number of times. This confirms a conjecture of Thomassen from 1984.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"23 1","pages":"0"},"PeriodicalIF":3.5000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/jams/1018","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
In 1981, Erdős and Hajnal asked whether the sum of the reciprocals of the odd cycle lengths in a graph with infinite chromatic number is necessarily infinite. Let C(G)\mathcal {C}(G) be the set of cycle lengths in a graph GG and let Codd(G)\mathcal {C}_{\mathrm {odd}}(G) be the set of odd numbers in C(G)\mathcal {C}(G). We prove that, if GG has chromatic number kk, then ∑ℓ∈Codd(G)1/ℓ≥(1/2−ok(1))logk\sum _{\ell \in \mathcal {C}_{\mathrm {odd}}(G)}1/\ell \geq (1/2-o_k(1))\log k. This solves Erdős and Hajnal’s odd cycle problem, and, furthermore, this bound is asymptotically optimal. In 1984, Erdős asked whether there is some dd such that each graph with chromatic number at least dd (or perhaps even only average degree at least dd) has a cycle whose length is a power of 2. We show that an average degree condition is sufficient for this problem, solving it with methods that apply to a wide range of sequences in addition to the powers of 2. Finally, we use our methods to show that, for every kk, there is some dd so that every graph with average degree at least dd has a subdivision of the complete graph KkK_k in which each edge is subdivided the same number of times. This confirms a conjecture of Thomassen from 1984.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.