Infinite sumsets in sets with positive density

IF 3.5 1区 数学 Q1 MATHEMATICS
Bryna Kra, Joel Moreira, Florian Richter, Donald Robertson
{"title":"Infinite sumsets in sets with positive density","authors":"Bryna Kra, Joel Moreira, Florian Richter, Donald Robertson","doi":"10.1090/jams/1030","DOIUrl":null,"url":null,"abstract":"Motivated by questions asked by Erdős, we prove that any set <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A subset-of double-struck upper N\"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo>⊂<!-- ⊂ --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">N</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">A\\subset \\mathbb {N}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with positive upper density contains, for any <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k element-of double-struck upper N\"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">N</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">k\\in \\mathbb {N}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, a sumset <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B 1 plus midline-horizontal-ellipsis plus upper B Subscript k\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>+</mml:mo> <mml:mo>⋯<!-- ⋯ --></mml:mo> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>B</mml:mi> <mml:mi>k</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">B_1+\\cdots +B_k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B 1\"> <mml:semantics> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:annotation encoding=\"application/x-tex\">B_1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, …, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B Subscript k Baseline subset-of double-struck upper N\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>B</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:mo>⊂<!-- ⊂ --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">N</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">B_k\\subset \\mathbb {N}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are infinite. Our proof uses ergodic theory and relies on structural results for measure preserving systems. Our techniques are new, even for the previously known case of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k equals 2\"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">k=2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"22 1","pages":"0"},"PeriodicalIF":3.5000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/jams/1030","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by questions asked by Erdős, we prove that any set A N A\subset \mathbb {N} with positive upper density contains, for any k N k\in \mathbb {N} , a sumset B 1 + + B k B_1+\cdots +B_k , where B 1 B_1 , …, B k N B_k\subset \mathbb {N} are infinite. Our proof uses ergodic theory and relies on structural results for measure preserving systems. Our techniques are new, even for the previously known case of k = 2 k=2 .
正密度集合中的无穷集合
受Erdős提出的问题的启发,我们证明了对于任意k∈N k\in \mathbb {N},具有正上密度的任何集合A∧A\子集\mathbb {N}包含一个sumset b1 +⋯+B k B_1+\cdots +B_k,其中b1 B_1,…,B k∧N B_k\子集\mathbb {N}是无限的。我们的证明使用遍历理论并依赖于测度保持系统的结构结果。我们的技术是新的,即使对于以前已知的k=2 k=2的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.60
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信