Bryna Kra, Joel Moreira, Florian Richter, Donald Robertson
{"title":"Infinite sumsets in sets with positive density","authors":"Bryna Kra, Joel Moreira, Florian Richter, Donald Robertson","doi":"10.1090/jams/1030","DOIUrl":null,"url":null,"abstract":"Motivated by questions asked by Erdős, we prove that any set <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A subset-of double-struck upper N\"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo>⊂<!-- ⊂ --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">N</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">A\\subset \\mathbb {N}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with positive upper density contains, for any <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k element-of double-struck upper N\"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">N</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">k\\in \\mathbb {N}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, a sumset <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B 1 plus midline-horizontal-ellipsis plus upper B Subscript k\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>+</mml:mo> <mml:mo>⋯<!-- ⋯ --></mml:mo> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>B</mml:mi> <mml:mi>k</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">B_1+\\cdots +B_k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B 1\"> <mml:semantics> <mml:msub> <mml:mi>B</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:annotation encoding=\"application/x-tex\">B_1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, …, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B Subscript k Baseline subset-of double-struck upper N\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>B</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:mo>⊂<!-- ⊂ --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">N</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">B_k\\subset \\mathbb {N}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are infinite. Our proof uses ergodic theory and relies on structural results for measure preserving systems. Our techniques are new, even for the previously known case of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k equals 2\"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">k=2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"22 1","pages":"0"},"PeriodicalIF":3.5000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/jams/1030","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Motivated by questions asked by Erdős, we prove that any set A⊂NA\subset \mathbb {N} with positive upper density contains, for any k∈Nk\in \mathbb {N}, a sumset B1+⋯+BkB_1+\cdots +B_k, where B1B_1, …, Bk⊂NB_k\subset \mathbb {N} are infinite. Our proof uses ergodic theory and relies on structural results for measure preserving systems. Our techniques are new, even for the previously known case of k=2k=2.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.