经浸没曲线的环面边界流形的有边花同调性

IF 3.5 1区 数学 Q1 MATHEMATICS
Jonathan Hanselman, Jacob Rasmussen, Liam Watson
{"title":"经浸没曲线的环面边界流形的有边花同调性","authors":"Jonathan Hanselman, Jacob Rasmussen, Liam Watson","doi":"10.1090/jams/1029","DOIUrl":null,"url":null,"abstract":"This paper gives a geometric interpretation of bordered Heegaard Floer homology for manifolds with torus boundary. If <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\"application/x-tex\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is such a manifold, we show that the type D structure <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove upper C upper F upper D With caret left-parenthesis upper M right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mover> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>F</mml:mi> <mml:mi>D</mml:mi> </mml:mrow> <mml:mo>^<!-- ^ --></mml:mo> </mml:mover> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>M</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\widehat {CFD}(M)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> may be viewed as a set of immersed curves decorated with local systems in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"partial-differential upper M\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"normal\">∂<!-- ∂ --></mml:mi> <mml:mi>M</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\partial M</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. These curves-with-decoration are invariants of the underlying three-manifold up to regular homotopy of the curves and isomorphism of the local systems. Given two such manifolds and a homeomorphism <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h\"> <mml:semantics> <mml:mi>h</mml:mi> <mml:annotation encoding=\"application/x-tex\">h</mml:annotation> </mml:semantics> </mml:math> </inline-formula> between the boundary tori, the Heegaard Floer homology of the closed manifold obtained by gluing with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h\"> <mml:semantics> <mml:mi>h</mml:mi> <mml:annotation encoding=\"application/x-tex\">h</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is obtained from the Lagrangian intersection Floer homology of the curve-sets. This machinery has several applications: We establish that the dimension of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove upper H upper F With caret\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mover> <mml:mrow> <mml:mi>H</mml:mi> <mml:mi>F</mml:mi> </mml:mrow> <mml:mo>^<!-- ^ --></mml:mo> </mml:mover> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\widehat {HF}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> decreases under a certain class of degree one maps (pinches) and we establish that the existence of an essential separating torus gives rise to a lower bound on the dimension of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove upper H upper F With caret\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mover> <mml:mrow> <mml:mi>H</mml:mi> <mml:mi>F</mml:mi> </mml:mrow> <mml:mo>^<!-- ^ --></mml:mo> </mml:mover> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\widehat {HF}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In particular, it follows that a prime rational homology sphere <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Y\"> <mml:semantics> <mml:mi>Y</mml:mi> <mml:annotation encoding=\"application/x-tex\">Y</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove upper H upper F With caret left-parenthesis upper Y right-parenthesis greater-than 5\"> <mml:semantics> <mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mover> <mml:mrow> <mml:mi>H</mml:mi> <mml:mi>F</mml:mi> </mml:mrow> <mml:mo>^<!-- ^ --></mml:mo> </mml:mover> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>Y</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>&gt;</mml:mo> <mml:mn>5</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\widehat {HF}(Y)&gt;5</mml:annotation> </mml:semantics> </mml:math> </inline-formula> must be geometric. Other results include a new proof of Eftekhary’s theorem that L-space homology spheres are atoroidal; a complete characterization of toroidal L-spaces in terms of gluing data; and a proof of a conjecture of Hom, Lidman, and Vafaee on satellite L-space knots.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"13 1","pages":"0"},"PeriodicalIF":3.5000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Bordered Floer homology for manifolds with torus boundary via immersed curves\",\"authors\":\"Jonathan Hanselman, Jacob Rasmussen, Liam Watson\",\"doi\":\"10.1090/jams/1029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper gives a geometric interpretation of bordered Heegaard Floer homology for manifolds with torus boundary. If <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is such a manifold, we show that the type D structure <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"ModifyingAbove upper C upper F upper D With caret left-parenthesis upper M right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mover> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>F</mml:mi> <mml:mi>D</mml:mi> </mml:mrow> <mml:mo>^<!-- ^ --></mml:mo> </mml:mover> </mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>M</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\widehat {CFD}(M)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> may be viewed as a set of immersed curves decorated with local systems in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"partial-differential upper M\\\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">∂<!-- ∂ --></mml:mi> <mml:mi>M</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\partial M</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. These curves-with-decoration are invariants of the underlying three-manifold up to regular homotopy of the curves and isomorphism of the local systems. Given two such manifolds and a homeomorphism <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"h\\\"> <mml:semantics> <mml:mi>h</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">h</mml:annotation> </mml:semantics> </mml:math> </inline-formula> between the boundary tori, the Heegaard Floer homology of the closed manifold obtained by gluing with <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"h\\\"> <mml:semantics> <mml:mi>h</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">h</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is obtained from the Lagrangian intersection Floer homology of the curve-sets. This machinery has several applications: We establish that the dimension of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"ModifyingAbove upper H upper F With caret\\\"> <mml:semantics> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mover> <mml:mrow> <mml:mi>H</mml:mi> <mml:mi>F</mml:mi> </mml:mrow> <mml:mo>^<!-- ^ --></mml:mo> </mml:mover> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\widehat {HF}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> decreases under a certain class of degree one maps (pinches) and we establish that the existence of an essential separating torus gives rise to a lower bound on the dimension of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"ModifyingAbove upper H upper F With caret\\\"> <mml:semantics> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mover> <mml:mrow> <mml:mi>H</mml:mi> <mml:mi>F</mml:mi> </mml:mrow> <mml:mo>^<!-- ^ --></mml:mo> </mml:mover> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\widehat {HF}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In particular, it follows that a prime rational homology sphere <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Y\\\"> <mml:semantics> <mml:mi>Y</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">Y</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"ModifyingAbove upper H upper F With caret left-parenthesis upper Y right-parenthesis greater-than 5\\\"> <mml:semantics> <mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mover> <mml:mrow> <mml:mi>H</mml:mi> <mml:mi>F</mml:mi> </mml:mrow> <mml:mo>^<!-- ^ --></mml:mo> </mml:mover> </mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>Y</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>&gt;</mml:mo> <mml:mn>5</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\widehat {HF}(Y)&gt;5</mml:annotation> </mml:semantics> </mml:math> </inline-formula> must be geometric. Other results include a new proof of Eftekhary’s theorem that L-space homology spheres are atoroidal; a complete characterization of toroidal L-spaces in terms of gluing data; and a proof of a conjecture of Hom, Lidman, and Vafaee on satellite L-space knots.\",\"PeriodicalId\":54764,\"journal\":{\"name\":\"Journal of the American Mathematical Society\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/jams/1029\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/jams/1029","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 25

摘要

给出了具有环面边界的流形的有边heegard flower同调的几何解释。如果M M是这样一个流形,我们证明D型结构CFD ^ (M) \widehat {CFD}(M)可以看作是一组浸入曲线,其中包含∂M \partial M中的局部系统。这些带装饰的曲线是底层三流形的不变量,直至曲线的正则同伦和局部系统的同构。给定两个这样的流形和边界环面之间的同胚h h,由曲线集的拉格朗日交花同调得到与h h胶合得到的闭流形的Heegaard花同调。这个机制有几个应用:我们建立了HF ^ \widehat {HF}的维数在某一类1次映射(缩点)下减小,并且我们建立了一个本质分离环的存在导致了HF ^ \widehat {HF}维数的下界。特别地,得到了一个素有理同调球Y Y与hf ^ (Y) >5 \widehat {HF}(Y)>5必须是几何的。其他的结果还包括对埃夫特哈里定理的一个新的证明,即l空间同调球是阿托面;用胶合数据完备地描述环面l空间;并证明了Hom、Lidman和Vafaee关于卫星l空间节的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bordered Floer homology for manifolds with torus boundary via immersed curves
This paper gives a geometric interpretation of bordered Heegaard Floer homology for manifolds with torus boundary. If M M is such a manifold, we show that the type D structure C F D ^ ( M ) \widehat {CFD}(M) may be viewed as a set of immersed curves decorated with local systems in M \partial M . These curves-with-decoration are invariants of the underlying three-manifold up to regular homotopy of the curves and isomorphism of the local systems. Given two such manifolds and a homeomorphism h h between the boundary tori, the Heegaard Floer homology of the closed manifold obtained by gluing with h h is obtained from the Lagrangian intersection Floer homology of the curve-sets. This machinery has several applications: We establish that the dimension of H F ^ \widehat {HF} decreases under a certain class of degree one maps (pinches) and we establish that the existence of an essential separating torus gives rise to a lower bound on the dimension of H F ^ \widehat {HF} . In particular, it follows that a prime rational homology sphere Y Y with H F ^ ( Y ) > 5 \widehat {HF}(Y)>5 must be geometric. Other results include a new proof of Eftekhary’s theorem that L-space homology spheres are atoroidal; a complete characterization of toroidal L-spaces in terms of gluing data; and a proof of a conjecture of Hom, Lidman, and Vafaee on satellite L-space knots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信