{"title":"经浸没曲线的环面边界流形的有边花同调性","authors":"Jonathan Hanselman, Jacob Rasmussen, Liam Watson","doi":"10.1090/jams/1029","DOIUrl":null,"url":null,"abstract":"This paper gives a geometric interpretation of bordered Heegaard Floer homology for manifolds with torus boundary. If <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\"application/x-tex\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is such a manifold, we show that the type D structure <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove upper C upper F upper D With caret left-parenthesis upper M right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mover> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>F</mml:mi> <mml:mi>D</mml:mi> </mml:mrow> <mml:mo>^<!-- ^ --></mml:mo> </mml:mover> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>M</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\widehat {CFD}(M)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> may be viewed as a set of immersed curves decorated with local systems in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"partial-differential upper M\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"normal\">∂<!-- ∂ --></mml:mi> <mml:mi>M</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\partial M</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. These curves-with-decoration are invariants of the underlying three-manifold up to regular homotopy of the curves and isomorphism of the local systems. Given two such manifolds and a homeomorphism <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h\"> <mml:semantics> <mml:mi>h</mml:mi> <mml:annotation encoding=\"application/x-tex\">h</mml:annotation> </mml:semantics> </mml:math> </inline-formula> between the boundary tori, the Heegaard Floer homology of the closed manifold obtained by gluing with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"h\"> <mml:semantics> <mml:mi>h</mml:mi> <mml:annotation encoding=\"application/x-tex\">h</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is obtained from the Lagrangian intersection Floer homology of the curve-sets. This machinery has several applications: We establish that the dimension of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove upper H upper F With caret\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mover> <mml:mrow> <mml:mi>H</mml:mi> <mml:mi>F</mml:mi> </mml:mrow> <mml:mo>^<!-- ^ --></mml:mo> </mml:mover> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\widehat {HF}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> decreases under a certain class of degree one maps (pinches) and we establish that the existence of an essential separating torus gives rise to a lower bound on the dimension of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove upper H upper F With caret\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mover> <mml:mrow> <mml:mi>H</mml:mi> <mml:mi>F</mml:mi> </mml:mrow> <mml:mo>^<!-- ^ --></mml:mo> </mml:mover> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\widehat {HF}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In particular, it follows that a prime rational homology sphere <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Y\"> <mml:semantics> <mml:mi>Y</mml:mi> <mml:annotation encoding=\"application/x-tex\">Y</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove upper H upper F With caret left-parenthesis upper Y right-parenthesis greater-than 5\"> <mml:semantics> <mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mover> <mml:mrow> <mml:mi>H</mml:mi> <mml:mi>F</mml:mi> </mml:mrow> <mml:mo>^<!-- ^ --></mml:mo> </mml:mover> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>Y</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>></mml:mo> <mml:mn>5</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\widehat {HF}(Y)>5</mml:annotation> </mml:semantics> </mml:math> </inline-formula> must be geometric. Other results include a new proof of Eftekhary’s theorem that L-space homology spheres are atoroidal; a complete characterization of toroidal L-spaces in terms of gluing data; and a proof of a conjecture of Hom, Lidman, and Vafaee on satellite L-space knots.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"13 1","pages":"0"},"PeriodicalIF":3.5000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Bordered Floer homology for manifolds with torus boundary via immersed curves\",\"authors\":\"Jonathan Hanselman, Jacob Rasmussen, Liam Watson\",\"doi\":\"10.1090/jams/1029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper gives a geometric interpretation of bordered Heegaard Floer homology for manifolds with torus boundary. If <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper M\\\"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is such a manifold, we show that the type D structure <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"ModifyingAbove upper C upper F upper D With caret left-parenthesis upper M right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mover> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>F</mml:mi> <mml:mi>D</mml:mi> </mml:mrow> <mml:mo>^<!-- ^ --></mml:mo> </mml:mover> </mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>M</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\widehat {CFD}(M)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> may be viewed as a set of immersed curves decorated with local systems in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"partial-differential upper M\\\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">∂<!-- ∂ --></mml:mi> <mml:mi>M</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\partial M</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. These curves-with-decoration are invariants of the underlying three-manifold up to regular homotopy of the curves and isomorphism of the local systems. Given two such manifolds and a homeomorphism <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"h\\\"> <mml:semantics> <mml:mi>h</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">h</mml:annotation> </mml:semantics> </mml:math> </inline-formula> between the boundary tori, the Heegaard Floer homology of the closed manifold obtained by gluing with <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"h\\\"> <mml:semantics> <mml:mi>h</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">h</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is obtained from the Lagrangian intersection Floer homology of the curve-sets. This machinery has several applications: We establish that the dimension of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"ModifyingAbove upper H upper F With caret\\\"> <mml:semantics> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mover> <mml:mrow> <mml:mi>H</mml:mi> <mml:mi>F</mml:mi> </mml:mrow> <mml:mo>^<!-- ^ --></mml:mo> </mml:mover> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\widehat {HF}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> decreases under a certain class of degree one maps (pinches) and we establish that the existence of an essential separating torus gives rise to a lower bound on the dimension of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"ModifyingAbove upper H upper F With caret\\\"> <mml:semantics> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mover> <mml:mrow> <mml:mi>H</mml:mi> <mml:mi>F</mml:mi> </mml:mrow> <mml:mo>^<!-- ^ --></mml:mo> </mml:mover> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\widehat {HF}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In particular, it follows that a prime rational homology sphere <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Y\\\"> <mml:semantics> <mml:mi>Y</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">Y</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"ModifyingAbove upper H upper F With caret left-parenthesis upper Y right-parenthesis greater-than 5\\\"> <mml:semantics> <mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mover> <mml:mrow> <mml:mi>H</mml:mi> <mml:mi>F</mml:mi> </mml:mrow> <mml:mo>^<!-- ^ --></mml:mo> </mml:mover> </mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>Y</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>></mml:mo> <mml:mn>5</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\widehat {HF}(Y)>5</mml:annotation> </mml:semantics> </mml:math> </inline-formula> must be geometric. Other results include a new proof of Eftekhary’s theorem that L-space homology spheres are atoroidal; a complete characterization of toroidal L-spaces in terms of gluing data; and a proof of a conjecture of Hom, Lidman, and Vafaee on satellite L-space knots.\",\"PeriodicalId\":54764,\"journal\":{\"name\":\"Journal of the American Mathematical Society\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/jams/1029\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/jams/1029","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Bordered Floer homology for manifolds with torus boundary via immersed curves
This paper gives a geometric interpretation of bordered Heegaard Floer homology for manifolds with torus boundary. If MM is such a manifold, we show that the type D structure CFD^(M)\widehat {CFD}(M) may be viewed as a set of immersed curves decorated with local systems in ∂M\partial M. These curves-with-decoration are invariants of the underlying three-manifold up to regular homotopy of the curves and isomorphism of the local systems. Given two such manifolds and a homeomorphism hh between the boundary tori, the Heegaard Floer homology of the closed manifold obtained by gluing with hh is obtained from the Lagrangian intersection Floer homology of the curve-sets. This machinery has several applications: We establish that the dimension of HF^\widehat {HF} decreases under a certain class of degree one maps (pinches) and we establish that the existence of an essential separating torus gives rise to a lower bound on the dimension of HF^\widehat {HF}. In particular, it follows that a prime rational homology sphere YY with HF^(Y)>5\widehat {HF}(Y)>5 must be geometric. Other results include a new proof of Eftekhary’s theorem that L-space homology spheres are atoroidal; a complete characterization of toroidal L-spaces in terms of gluing data; and a proof of a conjecture of Hom, Lidman, and Vafaee on satellite L-space knots.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.