Jean-Francois Dat, David Helm, Robert Kurinczuk, Gilbert Moss
{"title":"𝑝-adic群Hecke代数的有限性","authors":"Jean-Francois Dat, David Helm, Robert Kurinczuk, Gilbert Moss","doi":"10.1090/jams/1034","DOIUrl":null,"url":null,"abstract":"Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a reductive group over a non-archimedean local field <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\"> <mml:semantics> <mml:mi>F</mml:mi> <mml:annotation encoding=\"application/x-tex\">F</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of residue characteristic <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We prove that the Hecke algebras of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G left-parenthesis upper F right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>F</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">G(F)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, with coefficients in any noetherian <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Z Subscript script l\"> <mml:semantics> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>ℓ<!-- ℓ --></mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\mathbb {Z}_{\\ell }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-algebra <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\"application/x-tex\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script l not-equals p\"> <mml:semantics> <mml:mrow> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mo>≠<!-- ≠ --></mml:mo> <mml:mi>p</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\ell \\neq p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, are finitely generated modules over their centers, and that these centers are finitely generated <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\"application/x-tex\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-algebras. Following Bernstein’s original strategy, we then deduce that “second adjointness” holds for smooth representations of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G left-parenthesis upper F right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>F</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">G(F)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with coefficients in any <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Z left-bracket StartFraction 1 Over p EndFraction right-bracket\"> <mml:semantics> <mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mi>p</mml:mi> </mml:mfrac> <mml:mo stretchy=\"false\">]</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathbb {Z}[\\frac {1}{p}]</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-algebra. These results had been conjectured for a long time. The crucial new tool that unlocks the problem is the Fargues-Scholze morphism between a certain “excursion algebra” defined on the Langlands parameters side and the Bernstein center of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G left-parenthesis upper F right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>F</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">G(F)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Using this bridge, our main results are representation theoretic counterparts of the finiteness of certain morphisms between coarse moduli spaces of local Langlands parameters that we also prove here, which may be of independent interest.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"22 1","pages":"0"},"PeriodicalIF":3.5000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finiteness for Hecke algebras of 𝑝-adic groups\",\"authors\":\"Jean-Francois Dat, David Helm, Robert Kurinczuk, Gilbert Moss\",\"doi\":\"10.1090/jams/1034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a reductive group over a non-archimedean local field <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper F\\\"> <mml:semantics> <mml:mi>F</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">F</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of residue characteristic <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We prove that the Hecke algebras of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G left-parenthesis upper F right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>F</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">G(F)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, with coefficients in any noetherian <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper Z Subscript script l\\\"> <mml:semantics> <mml:msub> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi> </mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>ℓ<!-- ℓ --></mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {Z}_{\\\\ell }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-algebra <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper R\\\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script l not-equals p\\\"> <mml:semantics> <mml:mrow> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mo>≠<!-- ≠ --></mml:mo> <mml:mi>p</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\ell \\\\neq p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, are finitely generated modules over their centers, and that these centers are finitely generated <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper R\\\"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-algebras. Following Bernstein’s original strategy, we then deduce that “second adjointness” holds for smooth representations of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G left-parenthesis upper F right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>F</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">G(F)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with coefficients in any <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper Z left-bracket StartFraction 1 Over p EndFraction right-bracket\\\"> <mml:semantics> <mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi> </mml:mrow> <mml:mo stretchy=\\\"false\\\">[</mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mi>p</mml:mi> </mml:mfrac> <mml:mo stretchy=\\\"false\\\">]</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {Z}[\\\\frac {1}{p}]</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-algebra. These results had been conjectured for a long time. The crucial new tool that unlocks the problem is the Fargues-Scholze morphism between a certain “excursion algebra” defined on the Langlands parameters side and the Bernstein center of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G left-parenthesis upper F right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>F</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">G(F)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Using this bridge, our main results are representation theoretic counterparts of the finiteness of certain morphisms between coarse moduli spaces of local Langlands parameters that we also prove here, which may be of independent interest.\",\"PeriodicalId\":54764,\"journal\":{\"name\":\"Journal of the American Mathematical Society\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/jams/1034\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/jams/1034","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let GG be a reductive group over a non-archimedean local field FF of residue characteristic pp. We prove that the Hecke algebras of G(F)G(F), with coefficients in any noetherian Zℓ\mathbb {Z}_{\ell }-algebra RR with ℓ≠p\ell \neq p, are finitely generated modules over their centers, and that these centers are finitely generated RR-algebras. Following Bernstein’s original strategy, we then deduce that “second adjointness” holds for smooth representations of G(F)G(F) with coefficients in any Z[1p]\mathbb {Z}[\frac {1}{p}]-algebra. These results had been conjectured for a long time. The crucial new tool that unlocks the problem is the Fargues-Scholze morphism between a certain “excursion algebra” defined on the Langlands parameters side and the Bernstein center of G(F)G(F). Using this bridge, our main results are representation theoretic counterparts of the finiteness of certain morphisms between coarse moduli spaces of local Langlands parameters that we also prove here, which may be of independent interest.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.