{"title":"高阶阿贝尔群的Cartan作用及其分类","authors":"Ralf Spatzier, Kurt Vinhage","doi":"10.1090/jams/1033","DOIUrl":null,"url":null,"abstract":"We study <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript k Baseline times double-struck upper Z Superscript script l\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mi>k</mml:mi> </mml:msup> <mml:mo>×<!-- × --></mml:mo> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> <mml:mi>ℓ<!-- ℓ --></mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}^k \\times \\mathbb {Z}^\\ell</mml:annotation> </mml:semantics> </mml:math> </inline-formula> actions on arbitrary compact manifolds with a projectively dense set of Anosov elements and 1-dimensional coarse Lyapunov foliations. Such actions are called totally Cartan actions. We completely classify such actions as built from low-dimensional Anosov flows and diffeomorphisms and affine actions, verifying the Katok-Spatzier conjecture for this class. This is achieved by introducing a new tool, the action of a dynamically defined topological group describing paths in coarse Lyapunov foliations, and understanding its generators and relations. We obtain applications to the Zimmer program.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"14 1","pages":"0"},"PeriodicalIF":3.5000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cartan actions of higher rank abelian groups and their classification\",\"authors\":\"Ralf Spatzier, Kurt Vinhage\",\"doi\":\"10.1090/jams/1033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper R Superscript k Baseline times double-struck upper Z Superscript script l\\\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> <mml:mi>k</mml:mi> </mml:msup> <mml:mo>×<!-- × --></mml:mo> <mml:msup> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi> </mml:mrow> <mml:mi>ℓ<!-- ℓ --></mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {R}^k \\\\times \\\\mathbb {Z}^\\\\ell</mml:annotation> </mml:semantics> </mml:math> </inline-formula> actions on arbitrary compact manifolds with a projectively dense set of Anosov elements and 1-dimensional coarse Lyapunov foliations. Such actions are called totally Cartan actions. We completely classify such actions as built from low-dimensional Anosov flows and diffeomorphisms and affine actions, verifying the Katok-Spatzier conjecture for this class. This is achieved by introducing a new tool, the action of a dynamically defined topological group describing paths in coarse Lyapunov foliations, and understanding its generators and relations. We obtain applications to the Zimmer program.\",\"PeriodicalId\":54764,\"journal\":{\"name\":\"Journal of the American Mathematical Society\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/jams/1033\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/jams/1033","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
摘要
我们研究了rk × zr \mathbb {R} k \乘以mathbb {Z}^\的作用在任意紧流形上的投影密集的Anosov元素集和一维粗糙Lyapunov叶。这样的行为被称为完全的Cartan行为。我们将这类动作完全分类为低维Anosov流、微分同态和仿射动作,验证了该类的Katok-Spatzier猜想。这是通过引入一个新工具来实现的,即动态定义的拓扑群的作用,它描述了粗糙Lyapunov叶中的路径,并理解了它的生成器和关系。我们获得了季默程序的应用程序。
Cartan actions of higher rank abelian groups and their classification
We study Rk×Zℓ\mathbb {R}^k \times \mathbb {Z}^\ell actions on arbitrary compact manifolds with a projectively dense set of Anosov elements and 1-dimensional coarse Lyapunov foliations. Such actions are called totally Cartan actions. We completely classify such actions as built from low-dimensional Anosov flows and diffeomorphisms and affine actions, verifying the Katok-Spatzier conjecture for this class. This is achieved by introducing a new tool, the action of a dynamically defined topological group describing paths in coarse Lyapunov foliations, and understanding its generators and relations. We obtain applications to the Zimmer program.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.