Journal of Wind Engineering and Industrial Aerodynamics最新文献

筛选
英文 中文
On the uncertainty of aerodynamic derivatives obtained using forced vibration tests in active grid generated turbulent flow 主动网格湍流中强迫振动试验气动导数的不确定性研究
IF 4.2 2区 工程技术
Journal of Wind Engineering and Industrial Aerodynamics Pub Date : 2025-02-01 DOI: 10.1016/j.jweia.2025.106005
Oddbjørn Kildal, Øyvind Wiig Petersen, Ole Øiseth
{"title":"On the uncertainty of aerodynamic derivatives obtained using forced vibration tests in active grid generated turbulent flow","authors":"Oddbjørn Kildal,&nbsp;Øyvind Wiig Petersen,&nbsp;Ole Øiseth","doi":"10.1016/j.jweia.2025.106005","DOIUrl":"10.1016/j.jweia.2025.106005","url":null,"abstract":"<div><div>The present study investigates the effect of turbulence on aerodynamic derivatives (ADs) and the uncertainty of AD estimates due to buffeting forces. Wind tunnel experiments were conducted, using forced vibration testing to analyze changes in estimated ADs with increasing turbulence intensity. The experimental results revealed a significant scatter in the AD estimates, indicating the stochastic influence of buffeting forces on the estimation of ADs. Monte Carlo (MC) simulations were performed to further investigate this phenomenon. The MC simulations demonstrated that larger buffeting forces lead to larger uncertainty in estimated ADs, and highlighted the challenge of accurate estimation in the presence of turbulent flow. Despite challenges with the system identification, the study indicated that changes in aerodynamic damping due to turbulence are likely. In addition, closed-form analytical expressions for uncertainty estimation in ADs due to noise yielded uncertainty estimates that corresponded well with the experiments and the MC simulations. It was shown that the uncertainty of estimated ADs in turbulent flow can be decreased by increasing measurement duration and increasing the forced motion amplitude.</div></div>","PeriodicalId":54752,"journal":{"name":"Journal of Wind Engineering and Industrial Aerodynamics","volume":"257 ","pages":"Article 106005"},"PeriodicalIF":4.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143164062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical study of turbulent flows over complex terrain using an unsteady Reynolds-averaged Navier-Stokes model with a new method for turbulent inflow generation 基于非定常reynolds -average Navier-Stokes模型的复杂地形紊流数值研究与紊流产生新方法
IF 4.2 2区 工程技术
Journal of Wind Engineering and Industrial Aerodynamics Pub Date : 2025-02-01 DOI: 10.1016/j.jweia.2024.105991
Xiangyan Chen, Takeshi Ishihara
{"title":"Numerical study of turbulent flows over complex terrain using an unsteady Reynolds-averaged Navier-Stokes model with a new method for turbulent inflow generation","authors":"Xiangyan Chen,&nbsp;Takeshi Ishihara","doi":"10.1016/j.jweia.2024.105991","DOIUrl":"10.1016/j.jweia.2024.105991","url":null,"abstract":"<div><div>In this study, an unsteady Reynolds-Averaged Navier-Stokes (URANS) model with a prespecified averaging time and a new method for turbulent inflow generation is proposed to predict turbulent flows over complex terrain. Firstly, the effect of grid resolution on turbulent flows over complex terrain is investigated by the Reynolds-Averaged Navier-Stokes (RANS) and the URANS models. URANS improves the accuracy of the predicted mean velocity and standard deviation by using finer grids, but the improvement by RANS is limited. Furthermore, the turbulent flows over hills with different slopes predicted by URANS are examined with respect to various averaging times. An optimal averaging time based on the slope of the hills is recommended considering the prediction accuracy and computational efficiency of URANS. Finally, turbulent flows over complex terrain in coastal areas are investigated by URANS and validated by wind tunnel tests. The predicted mean and standard deviation of streamwise velocity over complex terrain by URANS are in good agreement with the experimental data, while those by RANS are overestimated or underestimated.</div></div>","PeriodicalId":54752,"journal":{"name":"Journal of Wind Engineering and Industrial Aerodynamics","volume":"257 ","pages":"Article 105991"},"PeriodicalIF":4.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143099128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A multi-sensor interval fusion adaptive regularization data assimilation model for wind direction prediction 一种用于风向预报的多传感器间隔融合自适应正则化数据同化模型
IF 4.2 2区 工程技术
Journal of Wind Engineering and Industrial Aerodynamics Pub Date : 2025-02-01 DOI: 10.1016/j.jweia.2024.105996
Yuang Wu , Shuo Liu , Jiachen Huang
{"title":"A multi-sensor interval fusion adaptive regularization data assimilation model for wind direction prediction","authors":"Yuang Wu ,&nbsp;Shuo Liu ,&nbsp;Jiachen Huang","doi":"10.1016/j.jweia.2024.105996","DOIUrl":"10.1016/j.jweia.2024.105996","url":null,"abstract":"<div><div>Real-time forecasting of wind fields is an essential prerequisite for computational fluid predictions of pollutant transport. In the domain of data assimilation for real-time weather forecasting, obtaining high-quality meteorological data measurements poses a challenge that significantly impacts prediction accuracy. Predicting wind direction through data assimilation presents an inverse problem, and low-quality wind direction data resulting from suboptimal sensor placement can lead to ill-posedness when constructing proxy models. Consequently, previous research has extensively investigated the optimal placement of meteorological sensors. However, the data assimilation experiment has thus introduced uncertainties associated with the positions of the sensors. To achieve this goal, this study proposes a adaptive data assimilation model. This model introduces the concept of local convergence intervals on reduced-order response model, and deconstructs ill-posed intervals into well-posed intervals, and obtains a unique solution interval by regularization through the convergence range distance fusing. Finally, the model selects sensors using adaptive local weights, and implements the data assimilation process using inverse Ensemble Kalman Filter. This paper employs data from the Huailai Test Station to design simulated wind direction experiments.The results indicate that the method is capable of overcoming the shortcomings of sensor placement and can enhance the accuracy of prediction.</div></div>","PeriodicalId":54752,"journal":{"name":"Journal of Wind Engineering and Industrial Aerodynamics","volume":"257 ","pages":"Article 105996"},"PeriodicalIF":4.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143099132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aeroelastic boundary layer tests of a 1:76 model of tall building and effects of adjacent building interference 1:76高层建筑模型气动弹性边界层试验及相邻建筑干扰影响
IF 4.2 2区 工程技术
Journal of Wind Engineering and Industrial Aerodynamics Pub Date : 2025-02-01 DOI: 10.1016/j.jweia.2025.106006
Bahareh Dokhaei , Khalid Abdelaziz , Behrouz Shafei , Partha Sarkar , Jared Hobeck , Alice Alipour
{"title":"Aeroelastic boundary layer tests of a 1:76 model of tall building and effects of adjacent building interference","authors":"Bahareh Dokhaei ,&nbsp;Khalid Abdelaziz ,&nbsp;Behrouz Shafei ,&nbsp;Partha Sarkar ,&nbsp;Jared Hobeck ,&nbsp;Alice Alipour","doi":"10.1016/j.jweia.2025.106006","DOIUrl":"10.1016/j.jweia.2025.106006","url":null,"abstract":"<div><div>With the continuous emergence of high-rise structures globally, there is a growing concern regarding the impact of wind on these wind-sensitive buildings. Consequently, the objective of this study is to examine the performance of a large-scale aeroelastic model of a high-rise building by conducting wind tunnel tests at a geometric scale of 1:76. Furthermore, the effects of upstream interference and transient wind speed were studied to represent the real turbulent wind regime in urban landscapes. The results are reported in both time-domain and frequency-domain to reveal the response characteristics. A comprehensive study of the large-aeroelastic responses in terms of rms of accelerations, power spectral density, base shear forces, and base moment were investigated. The results demonstrated that the across-wind responses were higher than along-wind responses in all the situation of wind speed and directions. Also, the presence of the upstream building significantly amplifies the across-wind and torsional response of the aeroelastic model but has only a minor effect on the model's along-wind response. The study's results can be used to evaluate numerical simulation for calculating a tall building's wind-induced vibration, as well as finally be utilized to produce guidelines for minimizing wind-related damage and occupant discomfort caused by high vibration.</div></div>","PeriodicalId":54752,"journal":{"name":"Journal of Wind Engineering and Industrial Aerodynamics","volume":"257 ","pages":"Article 106006"},"PeriodicalIF":4.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143102834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flow configuration improvement and vortex evolution of staggered cylinders 交错圆柱流动构型改进与涡演化
IF 4.2 2区 工程技术
Journal of Wind Engineering and Industrial Aerodynamics Pub Date : 2025-02-01 DOI: 10.1016/j.jweia.2025.106012
Yan-Jiao Guo , Xiang-Wei Min , Xi-Zhe Cheng , Wen-Li Chen
{"title":"Flow configuration improvement and vortex evolution of staggered cylinders","authors":"Yan-Jiao Guo ,&nbsp;Xiang-Wei Min ,&nbsp;Xi-Zhe Cheng ,&nbsp;Wen-Li Chen","doi":"10.1016/j.jweia.2025.106012","DOIUrl":"10.1016/j.jweia.2025.106012","url":null,"abstract":"<div><div>Wind tunnel experiments were performed to collect surface pressure data on twin staggered cylinders with longitudinal pitch ratios (<em>L</em>/<em>D</em>) of 2.4–7.7 and transverse pitch ratios (<em>T</em>/<em>D</em>) of −4 to 0 at Re = 4 × 10<sup>4</sup>. Simultaneous measurements of the pressure and velocity fields were performed for typical flows. Seven distinct flow configurations were identified and classified, including a newly discovered one termed the shear layer low-frequency swinging (SLS) flow configuration. This configuration arises from the periodic swinging of the inner shear layer of the downstream cylinder, alternating between vertical and horizontal orientations with respect to the flow direction at a Strouhal number of 0.03. The surface pressure properties of the downstream cylinder are analyzed by investigating the vortex formation and evolution. Various vortex evolution processes have been discussed, including periodic and persistent reattachment, incident vortex collisions, gap-vortex pairing and rushing, high-frequency vortex merging, and high-frequency modulation. The high-frequency modulation interrupts the shedding of low-frequency vortices from the outer side of the downstream cylinder, leading to the intermittent formation of two vortices during one low-frequency period. Except for the twin street flow configuration, each shear layer of the downstream cylinder sheds vortices at different rates in the two-frequency case.</div></div>","PeriodicalId":54752,"journal":{"name":"Journal of Wind Engineering and Industrial Aerodynamics","volume":"257 ","pages":"Article 106012"},"PeriodicalIF":4.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143102838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep-learning based simulation of tropical cyclone genesis in Northwest Pacific 基于深度学习的西北太平洋热带气旋形成模拟
IF 4.2 2区 工程技术
Journal of Wind Engineering and Industrial Aerodynamics Pub Date : 2025-02-01 DOI: 10.1016/j.jweia.2024.106003
Biao Tong , Gang Hu , YaXue Deng , YongJun Huang , YunCheng He
{"title":"Deep-learning based simulation of tropical cyclone genesis in Northwest Pacific","authors":"Biao Tong ,&nbsp;Gang Hu ,&nbsp;YaXue Deng ,&nbsp;YongJun Huang ,&nbsp;YunCheng He","doi":"10.1016/j.jweia.2024.106003","DOIUrl":"10.1016/j.jweia.2024.106003","url":null,"abstract":"<div><div>The frequency and spatial distribution of tropical cyclone genesis (TCG) plays a crucial role in assessing tropical cyclone (TC) activities and relevant hazards. However, the generation of TCG involves complex mechanisms that are correlated to the background environment, and there is still significant room for better describing the distribution patterns of TCG despite the great achievements that have been made via classic statistical techniques and dynamical/thermodynamical methods. This study utilizes deep learning (DL) technology to investigate TCG patterns, with the primary aim of developing more reasonable sampling models with better generalization performance and satisfactory accuracy. Two approaches are proposed. The first one uses Variational Auto-encoder (VAE) model for direct (or non-parametric) TCG simulation, while the second one employs Convolutional Neural Network (CNN) to further explore environmental effects. For the second approach, two specific strategies have been examined. The first strategy describes TCG as a function of large-scale environment parameters (such as sea surface temperature, vorticity, and vertical wind shear), and the other one establishes relationships between TCG and typical parameters of the environment at multiple altitudes. Multiple evaluation indexes are also proposed to quantify the performance of adopted techniques from the aspects of generalization and accuracy. Results demonstrate that the proposed DL models perform better than classic statistical methods across various functional aspects, particularly in terms of generalization performance. Meanwhile, the DL models have great potential in assessing the effects of climate change on TCG patterns, which is absent or weakened in classic simulation methods. In sum, the proposed TCG simulation methods can be used to facilitate the assessment of TC hazards effectively.</div></div>","PeriodicalId":54752,"journal":{"name":"Journal of Wind Engineering and Industrial Aerodynamics","volume":"257 ","pages":"Article 106003"},"PeriodicalIF":4.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143102840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Field measurement-based research on wind pressure interference effects of tracking photovoltaic arrays 基于实测的跟踪光伏阵列风压干扰效应研究
IF 4.2 2区 工程技术
Journal of Wind Engineering and Industrial Aerodynamics Pub Date : 2025-02-01 DOI: 10.1016/j.jweia.2024.105971
Terigen Bao , Zhengnong Li , Ou Pu , Ying Yang , Bin Huang , Honghua Wu
{"title":"Field measurement-based research on wind pressure interference effects of tracking photovoltaic arrays","authors":"Terigen Bao ,&nbsp;Zhengnong Li ,&nbsp;Ou Pu ,&nbsp;Ying Yang ,&nbsp;Bin Huang ,&nbsp;Honghua Wu","doi":"10.1016/j.jweia.2024.105971","DOIUrl":"10.1016/j.jweia.2024.105971","url":null,"abstract":"<div><div>This paper investigates the wind interference effect on the rear row of photovoltaic modules as wind passes through the front row in a multi-row tracking photovoltaic array. Through field wind pressure measurements, we comprehensively evaluated the wind pressure interference effect under various tilt angle and wind direction angles, including variations in the wind pressure coefficient, wind force coefficient, central axis torque coefficient, column base moment coefficient, and fluctuating wind pressure power spectrum. The results indicate that when the wind direction angle is perpendicular to the panel width (L), the interference effect on the rear row is more significant, observed as a shading effect on the rear wind pressure coefficient, wind force coefficient, central axis torque coefficient, and column base moment coefficient. The interference effect gradually weakens as the wind direction angle increases/decreases; in the small tilt angle range (0° &lt; <em>β</em> &lt; 15°), the interference effect on the rear row is minimal. Additionally, under high tilt angle conditions, the third row experienced relatively higher wind forces compared to the second row. The interference effect of the fluctuating wind pressure power spectrum primarily manifests in the variation of vortex shedding frequency, significantly affecting the frequency peak of the rear components in the high-frequency band. The sensitivity of vortex shedding to wind direction and tilt angle adds complexity to the wind-resistant design of tracked PV arrays. This study offers valuable insights for designing tracking photovoltaic arrays to withstand wind forces.</div></div>","PeriodicalId":54752,"journal":{"name":"Journal of Wind Engineering and Industrial Aerodynamics","volume":"257 ","pages":"Article 105971"},"PeriodicalIF":4.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143099120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Approximating wind speed probability distributions around a building by mixture weibull distribution with the methods of moments and L-moments 用矩量法和l矩量法用混合威布尔分布近似建筑物周围的风速概率分布
IF 4.2 2区 工程技术
Journal of Wind Engineering and Industrial Aerodynamics Pub Date : 2025-02-01 DOI: 10.1016/j.jweia.2024.106001
Wei Wang , Yishuai Gao , Naoki Ikegaya
{"title":"Approximating wind speed probability distributions around a building by mixture weibull distribution with the methods of moments and L-moments","authors":"Wei Wang ,&nbsp;Yishuai Gao ,&nbsp;Naoki Ikegaya","doi":"10.1016/j.jweia.2024.106001","DOIUrl":"10.1016/j.jweia.2024.106001","url":null,"abstract":"<div><div>Wind speed probability distribution functions (PDFs) are crucial for evaluating urban wind environments. While previous studies have used unimodal distribution functions to model PDFs, bimodal patterns are also observed in urban areas. To more accurately model unimodal and bimodal PDFs, this study assessed the applicability of the mixture Weibull distribution (2W2W). The performance of the two-parameter Weibull distribution (2W) was also analyzed for comparison. Three parameter estimation methods (method of moments (MM), method of L-moments (LM), and maximum likelihood method (ML)) were applied to wind speed data of an isolated building case from a LES database. It was found that L-moments show non-linear relationships with moments, but with smaller magnitudes. 2W2W outperforms 2W in estimating both moments and L-moments, especially for higher-order statistics. 2W2W has the potential to better capture both unimodal and bimodal distributions compared to 2W. While 2W2W generally outperforms 2W under MM, noticeable oscillations were observed at some points. Although ML is the most accurate method at most points, LM still outperforms ML at specific locations based on both 2W and 2W2W. This study is expected to offer valuable insights into modeling PDFs for urban wind environments.</div></div>","PeriodicalId":54752,"journal":{"name":"Journal of Wind Engineering and Industrial Aerodynamics","volume":"257 ","pages":"Article 106001"},"PeriodicalIF":4.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143099127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of blockage ratios in shaping wind dynamics in urban environments 城市环境中堵塞率对形成风动力的影响
IF 4.2 2区 工程技术
Journal of Wind Engineering and Industrial Aerodynamics Pub Date : 2025-02-01 DOI: 10.1016/j.jweia.2025.106008
Geng Tian , Dingyang Geng , Liangzhu (Leon) Wang , Theodore (Ted) Stathopoulos , Minping Wan , Shiyi Chen
{"title":"Influence of blockage ratios in shaping wind dynamics in urban environments","authors":"Geng Tian ,&nbsp;Dingyang Geng ,&nbsp;Liangzhu (Leon) Wang ,&nbsp;Theodore (Ted) Stathopoulos ,&nbsp;Minping Wan ,&nbsp;Shiyi Chen","doi":"10.1016/j.jweia.2025.106008","DOIUrl":"10.1016/j.jweia.2025.106008","url":null,"abstract":"<div><div>Analytical urban canopy models (UCMs) based on Prandtl’s mixing length theory usually ignore the blockage effects caused by building structures, which greatly reduces their accuracy in representing wind flow and turbulence variations within urban boundary layers. This study employs large-eddy simulations under neutral atmospheric stratification to investigate the effects of various blockage ratios on wind dynamics in urban environments. Detailed analyses are conducted on variations in instantaneous flow fields, mean velocity, Reynolds shear stress, and vorticity around buildings. Results indicate that higher blockage ratios restrict airflow above buildings, leading to increased local wind speeds and intensified turbulence within the urban canopy layer. In contrast, lower blockage ratios allow smoother airflow over the canopy, minimizing interactions between the airflow and buildings. Vorticity analysis suggests that higher blockage ratios induce smaller, denser vortices in the wake region, while lower blockage ratios generate longer, more dispersed vortices near the rooftop. Furthermore, this study introduces a modified friction velocity that reduces the bias in velocity by about 17% at a low blockage ratio of 4.44%, resulting in a more accurate representation of the velocity distribution around buildings. As a result, for neutral stratification at a specific moment, known parameters such as atmospheric boundary layer height can be used to predict velocity without additional simulations, thus significantly reducing the computational costs.</div></div>","PeriodicalId":54752,"journal":{"name":"Journal of Wind Engineering and Industrial Aerodynamics","volume":"257 ","pages":"Article 106008"},"PeriodicalIF":4.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143102839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Validating spatial reproduction of large-eddy simulations with PIV datasets for turbulence statistics at pedestrian level of urban canopy 基于PIV数据集的城市树冠层湍流统计大涡模拟空间再现验证
IF 4.2 2区 工程技术
Journal of Wind Engineering and Industrial Aerodynamics Pub Date : 2025-01-31 DOI: 10.1016/j.jweia.2025.106018
Haitham Osman , Naoki Ikegaya
{"title":"Validating spatial reproduction of large-eddy simulations with PIV datasets for turbulence statistics at pedestrian level of urban canopy","authors":"Haitham Osman ,&nbsp;Naoki Ikegaya","doi":"10.1016/j.jweia.2025.106018","DOIUrl":"10.1016/j.jweia.2025.106018","url":null,"abstract":"<div><div>For large-eddy simulations (LES) at pedestrian levels of urban canopies, accurate validation with wind-tunnel experiments is essential. While extensive LES research has been conducted, validation often focuses solely on fundamental statistical profiles above the urban canopies, disregarding the dramatic spatial variations and higher-order statistics within the flow field, particularly at pedestrian levels. Therefore, this study systematically validated the spatial distribution of various LES-derived statistics against PIV data within a cubical array, focusing on critical height of <span><math><mrow><mn>0.1</mn><mi>H</mi></mrow></math></span> (where <span><math><mrow><mi>H</mi></mrow></math></span> is the cube length). In addition to fundamental statistics, higher-order statistics were quantitatively validated with a hot-wire anemometer (HWA) above the canopy. Furthermore, to ensure the reliability of the LES results, a sensitivity analysis was conducted to assess the impact of the mesh resolutions and domain sizes. The <span><math><mrow><mi>H</mi><mo>/</mo><mn>40</mn></mrow></math></span> mesh aligns with PIV results for mean and standard deviation at <span><math><mrow><mn>0.1</mn><mi>H</mi></mrow></math></span>, offering a balance between accuracy and computational cost. In terms of validation metrics, the <span><math><mrow><mi>H</mi><mo>/</mo><mn>60</mn></mrow></math></span> mesh indicated the best consistency with the velocity skewness and kurtosis obtained by HWA above the canopy. While the turbulent length scale is affected by domain size when using cyclic boundary conditions, utilizing a <span><math><mrow><mn>16</mn><mi>H</mi></mrow></math></span> of streamwise length reproduces a more reliable streamwise integral length scale with the experiment for <span><math><mrow><mn>4</mn><mi>H</mi></mrow></math></span> and <span><math><mrow><mn>8</mn><mi>H</mi></mrow></math></span> spanwise lengths. However, a sharp reduction in the streamwise integral length scale was observed when using <span><math><mrow><mn>2</mn><mi>H</mi></mrow></math></span> in spanwise length. By incorporating these detailed validations, this study aims to underscore the key roles of both mesh resolution and domain size in accurately verifying and validating LES models for simulating pedestrian-level winds.</div></div>","PeriodicalId":54752,"journal":{"name":"Journal of Wind Engineering and Industrial Aerodynamics","volume":"258 ","pages":"Article 106018"},"PeriodicalIF":4.2,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143167356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信