{"title":"Disparities in aeolian sand transport across low and high wind speeds in the atmospheric surface layer","authors":"Guowen Han, Zhilin Huang, Xiaobin Zhang, Guowei Xin","doi":"10.1016/j.jweia.2024.105990","DOIUrl":null,"url":null,"abstract":"<div><div>Synchronously measured high-frequency wind speeds and saltation mass flux data were used to investigate the wind-blown sand transport dynamics across low and high wind speeds in the atmospheric surface layer. Our study reveals that the probability density functions (PDFs) of non-zero values of saltation mass flux follow an exponential distribution at relatively low wind speeds (<em>u</em><sub><em>τ</em></sub> < 0.35 m s<sup>−1</sup>). However, these PDFs shift to a lognormal distribution at relatively high wind speeds (<em>u</em><sub><em>τ</em></sub> > 0.45 m s<sup>−1</sup>). Additionally, the response of saltation mass flux to turbulent motions varies with wind speed. For example, sweep turbulent events contribute 55% to the total saltation mass flux at low wind speeds, whereas they contribute 45% at high wind speeds. Furthermore, Bagnold's formula, Kawamura's formula, and the formula developed by Martin and Kok are effective at high wind speeds. However, due to the intermittency of aeolian sand transport at low wind speeds, these formulas are invalid. We employed the condition-averaged saltation sand transport rate (<em>Q</em><sub><em>c</em></sub>) to investigate the scaling laws of saltation sand transport rates. Compared to the time-averaged saltation sand transport rate used in previous studies, <em>Q</em><sub><em>c</em></sub> values align more closely with the formula developed by Martin and Kok.</div></div>","PeriodicalId":54752,"journal":{"name":"Journal of Wind Engineering and Industrial Aerodynamics","volume":"257 ","pages":"Article 105990"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wind Engineering and Industrial Aerodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167610524003532","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Synchronously measured high-frequency wind speeds and saltation mass flux data were used to investigate the wind-blown sand transport dynamics across low and high wind speeds in the atmospheric surface layer. Our study reveals that the probability density functions (PDFs) of non-zero values of saltation mass flux follow an exponential distribution at relatively low wind speeds (uτ < 0.35 m s−1). However, these PDFs shift to a lognormal distribution at relatively high wind speeds (uτ > 0.45 m s−1). Additionally, the response of saltation mass flux to turbulent motions varies with wind speed. For example, sweep turbulent events contribute 55% to the total saltation mass flux at low wind speeds, whereas they contribute 45% at high wind speeds. Furthermore, Bagnold's formula, Kawamura's formula, and the formula developed by Martin and Kok are effective at high wind speeds. However, due to the intermittency of aeolian sand transport at low wind speeds, these formulas are invalid. We employed the condition-averaged saltation sand transport rate (Qc) to investigate the scaling laws of saltation sand transport rates. Compared to the time-averaged saltation sand transport rate used in previous studies, Qc values align more closely with the formula developed by Martin and Kok.
期刊介绍:
The objective of the journal is to provide a means for the publication and interchange of information, on an international basis, on all those aspects of wind engineering that are included in the activities of the International Association for Wind Engineering http://www.iawe.org/. These are: social and economic impact of wind effects; wind characteristics and structure, local wind environments, wind loads and structural response, diffusion, pollutant dispersion and matter transport, wind effects on building heat loss and ventilation, wind effects on transport systems, aerodynamic aspects of wind energy generation, and codification of wind effects.
Papers on these subjects describing full-scale measurements, wind-tunnel simulation studies, computational or theoretical methods are published, as well as papers dealing with the development of techniques and apparatus for wind engineering experiments.