Ileana Calotescu , Daniel Bîtcă , Maria Pia Repetto
{"title":"Full-scale monitoring of a telecommunication lattice tower under synoptic and thunderstorm winds","authors":"Ileana Calotescu , Daniel Bîtcă , Maria Pia Repetto","doi":"10.1016/j.jweia.2025.106022","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a full-scale monitoring system installed on a 50 m tall telecommunication lattice tower located in Sânnicolau Mare, Romania. The system has the dual purpose of measuring wind velocity and the wind-induced response of the tower, with particular attention to thunderstorms. It includes an ultrasonic anemometer, a temperature sensor, two triaxial accelerometers, six strain gauges and a video camera system. A first set of data recorded between January 2021 and December 2022 is analyzed in order to compare the dominant properties of thunderstorm and synoptic wind records and reveal the corresponding structural response. An improved approach to wind characterization based on anemometric and video data is proposed to separate the wind records into depressions and thunderstorms, highlighting the innovative use of video sequence to support classification of events. Anemometric and video data related to detected depressions and thunderstorms are presented, together with their full statistical characterizations. Wind induced structural response due to depression and thunderstorm records are described in terms of acceleration and strain. Patterns of depression and thunderstorm-induced response are presented, with the aim of emphasizing their diversity and complementing the identification of thunderstorms. Correlation of simultaneous wind velocity and structural response records is finally analyzed.</div></div>","PeriodicalId":54752,"journal":{"name":"Journal of Wind Engineering and Industrial Aerodynamics","volume":"258 ","pages":"Article 106022"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wind Engineering and Industrial Aerodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167610525000182","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a full-scale monitoring system installed on a 50 m tall telecommunication lattice tower located in Sânnicolau Mare, Romania. The system has the dual purpose of measuring wind velocity and the wind-induced response of the tower, with particular attention to thunderstorms. It includes an ultrasonic anemometer, a temperature sensor, two triaxial accelerometers, six strain gauges and a video camera system. A first set of data recorded between January 2021 and December 2022 is analyzed in order to compare the dominant properties of thunderstorm and synoptic wind records and reveal the corresponding structural response. An improved approach to wind characterization based on anemometric and video data is proposed to separate the wind records into depressions and thunderstorms, highlighting the innovative use of video sequence to support classification of events. Anemometric and video data related to detected depressions and thunderstorms are presented, together with their full statistical characterizations. Wind induced structural response due to depression and thunderstorm records are described in terms of acceleration and strain. Patterns of depression and thunderstorm-induced response are presented, with the aim of emphasizing their diversity and complementing the identification of thunderstorms. Correlation of simultaneous wind velocity and structural response records is finally analyzed.
期刊介绍:
The objective of the journal is to provide a means for the publication and interchange of information, on an international basis, on all those aspects of wind engineering that are included in the activities of the International Association for Wind Engineering http://www.iawe.org/. These are: social and economic impact of wind effects; wind characteristics and structure, local wind environments, wind loads and structural response, diffusion, pollutant dispersion and matter transport, wind effects on building heat loss and ventilation, wind effects on transport systems, aerodynamic aspects of wind energy generation, and codification of wind effects.
Papers on these subjects describing full-scale measurements, wind-tunnel simulation studies, computational or theoretical methods are published, as well as papers dealing with the development of techniques and apparatus for wind engineering experiments.