{"title":"Standardizing methodologies to study microplastics and nanoplastics in cardiovascular diseases.","authors":"Yilin Pan, Suowen Xu, Xiubin Yang","doi":"10.1016/j.tem.2024.07.013","DOIUrl":"https://doi.org/10.1016/j.tem.2024.07.013","url":null,"abstract":"<p><p>Microplastics and nanoplastics (MNPs) are being recognized as new cardiovascular risk factors, impacting vascular cell functions and exacerbating atherosclerosis through diverse mechanisms. However, the varied concentrations of MNPs detected in major cardiovascular tissues highlight the urgent need for standardized research methodologies to better understand their impact and inform future health guidelines.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141914578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Erica Pranzini, Luigi Ippolito, Elisa Pardella, Elisa Giannoni, Paola Chiarugi
{"title":"Adapt and shape: metabolic features within the metastatic niche.","authors":"Erica Pranzini, Luigi Ippolito, Elisa Pardella, Elisa Giannoni, Paola Chiarugi","doi":"10.1016/j.tem.2024.07.016","DOIUrl":"https://doi.org/10.1016/j.tem.2024.07.016","url":null,"abstract":"<p><p>The success of disseminating cancer cells (DTCs) at specific metastatic sites is influenced by several metabolic factors. Even before DTCs arrival, metabolic conditioning from the primary tumor participates in creating a favorable premetastatic niche at distant organs. In addition, DTCs adjust their metabolism to better survive along the metastatic journey and successfully colonize their ultimate destination. However, the idea that the environment of the target organs may metabolically impact the metastatic fate is often underestimated. Here, we review the coexistence of two distinct strategies by which cancer cells shape and/or adapt to the metabolic profile of colonized tissues, ultimately creating a proper soil for their seeding and proliferation.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141914575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dainan Yu, Lanfang Luo, Hongmei Wang, Ng Shyh-Chang
{"title":"Pregnancy-induced metabolic reprogramming and regenerative responses to pro-aging stresses.","authors":"Dainan Yu, Lanfang Luo, Hongmei Wang, Ng Shyh-Chang","doi":"10.1016/j.tem.2024.07.011","DOIUrl":"https://doi.org/10.1016/j.tem.2024.07.011","url":null,"abstract":"<p><p>Pregnancy is associated with physiological adaptations that affect virtually all organs, enabling the mother to support the growing fetus and placenta while withstanding the demands of pregnancy. As a result, mammalian pregnancy is a unique state that exerts paradoxical effects on maternal health. On one hand, the metabolic stress induced by pregnancy can accelerate aging and functional decline in organs. On the other hand, pregnancy activates metabolic programming and tissue regenerative responses that can reverse age-related impairments. In this sense, the oocyte-to-blastocyst transition is not the only physiological reprogramming event in the mammalian body, as pregnancy-induced regeneration could constitute a second physiological reprogramming event. Here, we review findings on how pregnancy dualistically leads to aging and rejuvenation in the maternal body.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141914577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The sphinx helps to answer the riddle of cardiac regeneration.","authors":"Jae Woo Jung, Timothy Hla, Zoltan Arany","doi":"10.1016/j.tem.2024.05.003","DOIUrl":"10.1016/j.tem.2024.05.003","url":null,"abstract":"<p><p>Cardiomyocyte (CM) death drives heart failure worldwide, and efficient CM regeneration remains a fervently pursued but unachieved goal. Ji and colleagues recently described a novel approach to regeneration by orchestrating divergent sphingolipid signaling pathways in CMs and cardiac fibroblasts (CFs). The findings uncover new biology and offer interesting translational opportunities.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"677-679"},"PeriodicalIF":11.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11321922/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140960887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dissociating the metabolic and tumor-suppressive activity of p53.","authors":"Yoshitaka Sakurai, Naoto Kubota, Takashi Kadowaki","doi":"10.1016/j.tem.2024.07.018","DOIUrl":"https://doi.org/10.1016/j.tem.2024.07.018","url":null,"abstract":"<p><p>The tumor suppressor p53 regulates metabolic homeostasis. Recently, Tsaousidou et al. reported that selective activation of p53 via downregulation of Tudor interacting repair regulator (TIRR) confers protection against cancer despite obesity and insulin resistance, providing new insights into the role of p53 at the intersection of oncogenesis and systemic metabolism.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metabolic remodeling in cancer and senescence and its therapeutic implications.","authors":"Yeonju Kim, Yeji Jang, Mi-Sung Kim, Chanhee Kang","doi":"10.1016/j.tem.2024.02.008","DOIUrl":"10.1016/j.tem.2024.02.008","url":null,"abstract":"<p><p>Cellular metabolism is a flexible and plastic network that often dictates physiological and pathological states of the cell, including differentiation, cancer, and aging. Recent advances in cancer metabolism represent a tremendous opportunity to treat cancer by targeting its altered metabolism. Interestingly, despite their stable growth arrest, senescent cells - a critical component of the aging process - undergo metabolic changes similar to cancer metabolism. A deeper understanding of the similarities and differences between these disparate pathological conditions will help identify which metabolic reprogramming is most relevant to the therapeutic liabilities of senescence. Here, we compare and contrast cancer and senescence metabolism and discuss how metabolic therapies can be established as a new modality of senotherapy for healthy aging.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"732-744"},"PeriodicalIF":11.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140061306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sang Mun Han, Hahn Nahmgoong, Kyung Min Yim, Jae Bum Kim
{"title":"How obesity affects adipocyte turnover.","authors":"Sang Mun Han, Hahn Nahmgoong, Kyung Min Yim, Jae Bum Kim","doi":"10.1016/j.tem.2024.07.004","DOIUrl":"https://doi.org/10.1016/j.tem.2024.07.004","url":null,"abstract":"<p><p>Cellular turnover is fundamental for tissue homeostasis and integrity. Adipocyte turnover, accounting for 4% of the total cellular mass turnover in humans, is essential for adipose tissue homeostasis during metabolic stress. In obesity, an altered adipose tissue microenvironment promotes adipocyte death. To clear dead adipocytes, macrophages are recruited and form a distinctive structure known as crown-like structure; subsequently, new adipocytes are generated from adipose stem and progenitor cells in the adipogenic niche to replace dead adipocytes. Accumulating evidence indicates that adipocyte death, clearance, and adipogenesis are sophisticatedly orchestrated during adipocyte turnover. In this Review, we summarize our current understandings of each step in adipocyte turnover, discussing its key players and regulatory mechanisms.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brandon Ebright, Marlon V Duro, Kai Chen, Stan Louie, Hussein N Yassine
{"title":"Effects of APOE4 on omega-3 brain metabolism across the lifespan.","authors":"Brandon Ebright, Marlon V Duro, Kai Chen, Stan Louie, Hussein N Yassine","doi":"10.1016/j.tem.2024.03.003","DOIUrl":"10.1016/j.tem.2024.03.003","url":null,"abstract":"<p><p>Omega-3 (n-3) polyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid (DHA), have important roles in human nutrition and brain health by promoting neuronal functions, maintaining inflammatory homeostasis, and providing structural integrity. As Alzheimer's disease (AD) pathology progresses, DHA metabolism in the brain becomes dysregulated, the timing and extent of which may be influenced by the apolipoprotein E ε4 (APOE4) allele. Here, we discuss how maintaining adequate DHA intake early in life may slow the progression to AD dementia in cognitively normal individuals with APOE4, how recent advances in DHA brain imaging could offer insights leading to more personalized preventive strategies, and how alternative strategies targeting PUFA metabolism pathways may be more effective in mitigating disease progression in patients with existing AD dementia.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"745-757"},"PeriodicalIF":11.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11321946/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140867319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Opportunities and challenges in phage therapy for cardiometabolic diseases.","authors":"Koen Wortelboer, Hilde Herrema","doi":"10.1016/j.tem.2024.03.007","DOIUrl":"10.1016/j.tem.2024.03.007","url":null,"abstract":"<p><p>The worldwide prevalence of cardiometabolic diseases (CMD) is increasing, and emerging evidence implicates the gut microbiota in this multifactorial disease development. Bacteriophages (phages) are viruses that selectively target a bacterial host; thus, phage therapy offers a precise means of modulating the gut microbiota, limiting collateral damage on the ecosystem. Several studies demonstrate the potential of phages in human disease, including alcoholic and steatotic liver disease. In this opinion article we discuss the potential of phage therapy as a predefined medicinal product for CMD and discuss its current challenges, including the generation of effective phage combinations, product formulation, and strict manufacturing requirements.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"687-696"},"PeriodicalIF":11.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140868713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jorge R Soliz-Rueda, Cristina Cuesta-Marti, Siobhain M O'Mahony, Gerard Clarke, Harriët Schellekens, Begoña Muguerza
{"title":"Gut microbiota and eating behaviour in circadian syndrome.","authors":"Jorge R Soliz-Rueda, Cristina Cuesta-Marti, Siobhain M O'Mahony, Gerard Clarke, Harriët Schellekens, Begoña Muguerza","doi":"10.1016/j.tem.2024.07.008","DOIUrl":"https://doi.org/10.1016/j.tem.2024.07.008","url":null,"abstract":"<p><p>Eating behaviour and circadian rhythms are closely related. The type, timing, and quantity of food consumed, and host circadian rhythms, directly influence the intestinal microbiota, which in turn impacts host circadian rhythms and regulates food intake beyond homeostatic eating. This Opinion discusses the impact of food intake and circadian disruptions induced by an obesogenic environment on gut-brain axis signalling. We also explore potential mechanisms underlying the effects of altered gut microbiota on food intake behaviour and circadian rhythmicity. Understanding the crosstalk between gut microbiota, circadian rhythms, and unhealthy eating behaviour is crucial to addressing the obesity epidemic, which remains one of the biggest societal challenges of our time.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}