Jean Charles Nicolas, Thomas H Lee, Carmelo Quarta
{"title":"Can brain neurons change identity? Lessons from obesity.","authors":"Jean Charles Nicolas, Thomas H Lee, Carmelo Quarta","doi":"10.1016/j.tem.2024.11.006","DOIUrl":"https://doi.org/10.1016/j.tem.2024.11.006","url":null,"abstract":"<p><p>It has long been thought that the functional identity of mammalian brain neurons is programmed during development and remains stable throughout adult life; however, certain populations of neurons continue to express active regulators of neuronal identity into adulthood. Prolonged exposure to diet-induced metabolic stress induces features of neuronal identity modification in adult mice, and maladaptive changes in neuronal identity maintenance have been linked to cognitive impairment in humans suffering from neurodegenerative diseases often associated with obesity. Here we discuss how, by unraveling the neurological roots of obesity, we may solve the puzzle of whether mammalian brain neurons retain identity plasticity into adulthood, while advancing knowledge of the pathogenic mechanisms at the interface of metabolic and neurodegenerative disorders.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142792854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bandy Chen, David Meseguer, Stephanie Lenck, Jean-Leon Thomas, Marc Schneeberger
{"title":"Rewiring of the glymphatic landscape in metabolic disorders.","authors":"Bandy Chen, David Meseguer, Stephanie Lenck, Jean-Leon Thomas, Marc Schneeberger","doi":"10.1016/j.tem.2024.11.005","DOIUrl":"10.1016/j.tem.2024.11.005","url":null,"abstract":"<p><p>The incorporation of the glymphatic clearance system in the study of brain physiology aids in the advancement of innovative diagnostic and treatment strategies for neurological disorders. Exploring the glymphatic system across (from) neurological and (to) metabolic diseases may provide a better link between obesity and neurological disorders. Recent studies indicate the role of metabolic dysfunction as a risk factor for cognitive decline and neurological disorders through the disruption of the glymphatic system. Further investigation into how metabolic dysfunction disrupts glymphatic homeostasis and the domino effects on the neurovascular landscape, including neurovascular uncoupling, cerebral blood flow disruptions, blood-brain barrier leakage, and demyelination, can provide mechanistic insights into the link between obesity and neurological disorders.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142787765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Why cells need iron: a compendium of iron utilisation.","authors":"Megan R Teh, Andrew E Armitage, Hal Drakesmith","doi":"10.1016/j.tem.2024.04.015","DOIUrl":"10.1016/j.tem.2024.04.015","url":null,"abstract":"<p><p>Iron deficiency is globally prevalent, causing an array of developmental, haematological, immunological, neurological, and cardiometabolic impairments, and is associated with symptoms ranging from chronic fatigue to hair loss. Within cells, iron is utilised in a variety of ways by hundreds of different proteins. Here, we review links between molecular activities regulated by iron and the pathophysiological effects of iron deficiency. We identify specific enzyme groups, biochemical pathways, cellular functions, and cell lineages that are particularly iron dependent. We provide examples of how iron deprivation influences multiple key systems and tissues, including immunity, hormone synthesis, and cholesterol metabolism. We propose that greater mechanistic understanding of how cellular iron influences physiological processes may lead to new therapeutic opportunities across a range of diseases.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"1026-1049"},"PeriodicalIF":11.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11616622/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140960889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reconsidering lactate disallowance in pancreatic β cells.","authors":"Accalia Fu","doi":"10.1016/j.tem.2024.06.014","DOIUrl":"10.1016/j.tem.2024.06.014","url":null,"abstract":"<p><p>Lactate synthesis via lactate dehydrogenase A (LDHA), traditionally considered to be a 'disallowed' function in pancreatic β cells, is redefined by Cuozzo et al. who find that lactate produced by β cells regulates fasting insulin secretion via LDHB. The metabolic sources, fates, and relevance of β cell lactate are further examined.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"1023-1025"},"PeriodicalIF":11.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141538935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shiyu Zhao, Frank Qian, Zhenzhen Wan, Xue Chen, An Pan, Gang Liu
{"title":"Vitamin D and major chronic diseases.","authors":"Shiyu Zhao, Frank Qian, Zhenzhen Wan, Xue Chen, An Pan, Gang Liu","doi":"10.1016/j.tem.2024.04.018","DOIUrl":"10.1016/j.tem.2024.04.018","url":null,"abstract":"<p><p>Numerous observational studies have demonstrated a significant inverse association between vitamin D status and the risk of major chronic disease, including type 2 diabetes (T2D), cardiovascular disease (CVD), and cancer. However, findings from Mendelian randomization (MR) studies and randomized controlled trials (RCTs) suggest minimal or no benefit of increased vitamin D levels. We provide an overview of recent literature linking vitamin D to major chronic diseases. Because emerging evidence indicates a potential threshold effect of vitamin D, future well-designed studies focused on diverse populations with vitamin D deficiency or insufficiency are warranted for a more comprehensive understanding of the effect of maintaining sufficient vitamin D status on the prevention of major chronic diseases.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"1050-1061"},"PeriodicalIF":11.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141187024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Catherine Arden, Seo H Park, Xaviera Riani Yasasilka, Eun Y Lee, Myung-Shik Lee
{"title":"Autophagy and lysosomal dysfunction in diabetes and its complications.","authors":"Catherine Arden, Seo H Park, Xaviera Riani Yasasilka, Eun Y Lee, Myung-Shik Lee","doi":"10.1016/j.tem.2024.06.010","DOIUrl":"10.1016/j.tem.2024.06.010","url":null,"abstract":"<p><p>Autophagy is critical for energy homeostasis and the function of organelles such as endoplasmic reticulum (ER) and mitochondria. Dysregulated autophagy due to aging, environmental factors, or genetic predisposition can be an underlying cause of not only diabetes through β-cell dysfunction and metabolic inflammation, but also diabetic complications such as diabetic kidney diseases (DKDs). Dysfunction of lysosomes, effector organelles of autophagic degradation, due to metabolic stress or nutrients/metabolites accumulating in metabolic diseases is also emerging as a cause or aggravating element in diabetes and its complications. Here, we discuss the etiological role of dysregulated autophagy and lysosomal dysfunction in diabetes and a potential role of autophagy or lysosomal modulation as a new avenue for treatment of diabetes and its complications.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"1078-1090"},"PeriodicalIF":11.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141762693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emma Barroso, Javier Jurado-Aguilar, Walter Wahli, Xavier Palomer, Manuel Vázquez-Carrera
{"title":"Increased hepatic gluconeogenesis and type 2 diabetes mellitus.","authors":"Emma Barroso, Javier Jurado-Aguilar, Walter Wahli, Xavier Palomer, Manuel Vázquez-Carrera","doi":"10.1016/j.tem.2024.05.006","DOIUrl":"10.1016/j.tem.2024.05.006","url":null,"abstract":"<p><p>Abnormally increased hepatic gluconeogenesis is a significant contributor to hyperglycemia in the fasting state in patients with type 2 diabetes mellitus (T2DM) due to insulin resistance. Metformin, the most prescribed drug for the treatment of T2DM, is believed to exert its effect mainly by reducing hepatic gluconeogenesis. Here, we discuss how increased hepatic gluconeogenesis contributes to T2DM and we review newly revealed mechanisms underlying the attenuation of gluconeogenesis by metformin. In addition, we analyze the recent findings on new determinants involved in the regulation of gluconeogenesis, which might ultimately lead to the identification of novel and targeted treatment strategies for T2DM.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"1062-1077"},"PeriodicalIF":11.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141181380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jingjuan Chen, James F Markworth, Christina Ferreira, Chi Zhang, Shihuan Kuang
{"title":"Lipid droplets as cell fate determinants in skeletal muscle.","authors":"Jingjuan Chen, James F Markworth, Christina Ferreira, Chi Zhang, Shihuan Kuang","doi":"10.1016/j.tem.2024.10.006","DOIUrl":"https://doi.org/10.1016/j.tem.2024.10.006","url":null,"abstract":"<p><p>Lipid droplets (LDs) are dynamic organelles that communicate with other cellular components to orchestrate energetic homeostasis and signal transduction. In skeletal muscle, the presence and importance of LDs have been widely studied in myofibers of both rodents and humans under physiological conditions and in metabolic disorders. However, the role of LDs in myogenic stem cells has only recently begun to be unveiled. In this review we briefly summarize the process of LD biogenesis and degradation in the most prevalent model. We then review recent knowledge on LDs in skeletal muscle and muscle stem cells. We further introduce advanced methodologies for LD imaging and mass spectrometry that have propelled our understanding of the dynamics and heterogeneity of LDs.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142755918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Endoscopic management of obesity and metabolic diseases.","authors":"Trent Walradt, Pichamol Jirapinyo","doi":"10.1016/j.tem.2024.11.001","DOIUrl":"https://doi.org/10.1016/j.tem.2024.11.001","url":null,"abstract":"<p><p>Obesity has become a global pandemic that is associated with a range of metabolic disorders. Traditional treatment options, such as lifestyle modification and anti-obesity medications, often exhibit limited efficacy and can lead to long-term weight gain, especially upon discontinuation of the medication. Although bariatric surgery is effective, its accessibility is constrained, and only a small percentage of eligible patients receive this intervention. Over the past two decades, endoscopic bariatric and metabolic therapies (EBMTs) have emerged as minimally invasive and effective alternatives for managing obesity and its related comorbidities. This article reviews primary gastric and small bowel EBMTs, their mechanisms of action, key supporting literature, and the metabolic outcomes associated with each device and procedure.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142755914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marie Spreckley, Mehru Raza, Kamrul Islam, Jessry Russell, Karen Hunt, Ceri Durham, Genes Health Research Team, David van Heel, Ahsan Khan, Sarah Finer, Moneeza K Siddiqui
{"title":"Advancing health and fostering community involvement in medical research through the Genes & Health study.","authors":"Marie Spreckley, Mehru Raza, Kamrul Islam, Jessry Russell, Karen Hunt, Ceri Durham, Genes Health Research Team, David van Heel, Ahsan Khan, Sarah Finer, Moneeza K Siddiqui","doi":"10.1016/j.tem.2024.11.002","DOIUrl":"https://doi.org/10.1016/j.tem.2024.11.002","url":null,"abstract":"<p><p>The Genes & Health study, an initiative focused on British-Pakistani and British-Bangladeshi volunteers, is at the forefront of diversifying genetic research and driving scientific innovation. Here, we explore how this study has propelled scientific advancements and positively impacted communities, emphasizing its collaborative ethos, dedication to societal needs, and accomplishments.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142752260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}