Ruth Frampton, Samantha Hocking, Jennifer R Snaith, Jerry R Greenfield
{"title":"Targeting cardiometabolic risk in type 1 diabetes through incretin physiology.","authors":"Ruth Frampton, Samantha Hocking, Jennifer R Snaith, Jerry R Greenfield","doi":"10.1016/j.tem.2025.06.004","DOIUrl":"https://doi.org/10.1016/j.tem.2025.06.004","url":null,"abstract":"<p><p>People living with type 1 diabetes have significantly increased cardiovascular risk compared with the general population. Traditional risk factors include hypertension, dyslipidaemia, and obesity. However, those with type 1 diabetes contend with treatment-induced insulin resistance and pancreatic and incretin hormone dysfunction, leading to dysglycaemia, which also impacts cardiovascular risk. Here, we highlight the underlying metabolic environment in type 1 diabetes with a focus on glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide 1 (GLP-1), and glucagon physiology. With the emergence of incretin-based therapies such as semaglutide (a GLP-1 receptor agonist) and tirzepatide (a combined GLP-1/GIP receptor agonist) targeting these receptor pathways, there is now potential to directly target metabolic deficits to address cardiometabolic risk in a type 1 diabetes population.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144562017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel Jimenez-Blasco, Rebeca Lapresa, Jesus Agulla, Angeles Almeida, Juan P Bolaños
{"title":"Neuronal glycolysis meets mitophagy to govern organismal wellbeing.","authors":"Daniel Jimenez-Blasco, Rebeca Lapresa, Jesus Agulla, Angeles Almeida, Juan P Bolaños","doi":"10.1016/j.tem.2025.05.005","DOIUrl":"https://doi.org/10.1016/j.tem.2025.05.005","url":null,"abstract":"<p><p>Neurons are exceptionally energy-demanding cells but have limited energy storage, relying on a constant supply of fuel and oxygen. Although glucose is the brain's main energy source, neurons reduce glycolysis under normal conditions. This surprising strategy helps to protect mitochondria by preserving nicotinamide-adenine dinucleotide (NAD<sup>+</sup>), a vital cofactor consumed by glycolysis. NAD<sup>+</sup> is needed for sirtuin-driven mitophagy, a process that removes damaged mitochondria. By saving NAD<sup>+</sup>, neurons can maintain healthy, energy-efficient mitochondria. These mitochondria then use alternative fuels such as lactate and ketone bodies from astrocytes. Here, we discuss the way in which this balance between reduced glycolysis and active mitophagy supports brain function and overall metabolic health, highlighting a sophisticated system that prioritizes mitochondrial quality for long-term cognitive performance and systemic homeostasis.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144562016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microglial insulin resistance drives neurodegeneration.","authors":"Miao Sun, Weidong Mi","doi":"10.1016/j.tem.2025.06.006","DOIUrl":"https://doi.org/10.1016/j.tem.2025.06.006","url":null,"abstract":"<p><p>Brain insulin resistance (BIR) contributes to neurodegenerative diseases such as Alzheimer's disease (AD). Recently, Chen et al. revealed that microglial insulin signaling loss drives neuroinflammation and amyloid-β (Aβ) accumulation, promoting AD progression. These findings provide insights for the prevention and treatment of AD and cognitive disorders.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144562015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mitochondria as sensors of intracellular pathogens.","authors":"Jose M Delgado, Lena Pernas","doi":"10.1016/j.tem.2024.10.009","DOIUrl":"10.1016/j.tem.2024.10.009","url":null,"abstract":"<p><p>Mitochondria must sense their environment to enable cells and organisms to adapt to diverse environments and survive during stress. However, during microbial infection, an evolutionary pressure since the inception of the eukaryotic cell, these organelles are traditionally viewed as targets for microbes. In this opinion we consider the perspective that mitochondria are domesticated microbes that sense and guard their 'host' cell against pathogens. We explore potential mechanisms by which mitochondria detect intracellular pathogens and induce mitochondria-autonomous responses that activate cellular defenses.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"638-644"},"PeriodicalIF":11.4,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142696205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alessandro Giollo, Mariangela Salvato, Andrea Doria
{"title":"Recognizing the role of fibromyalgia in post-exertional malaise.","authors":"Alessandro Giollo, Mariangela Salvato, Andrea Doria","doi":"10.1016/j.tem.2025.02.005","DOIUrl":"10.1016/j.tem.2025.02.005","url":null,"abstract":"","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"605-606"},"PeriodicalIF":11.4,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143617790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stefano Auddino, Elena Aiello, Giuseppina Emanuela Grieco, Francesco Dotta, Guido Sebastiani
{"title":"A three-layer perspective on miRNA regulation in β cell inflammation.","authors":"Stefano Auddino, Elena Aiello, Giuseppina Emanuela Grieco, Francesco Dotta, Guido Sebastiani","doi":"10.1016/j.tem.2024.10.002","DOIUrl":"10.1016/j.tem.2024.10.002","url":null,"abstract":"<p><p>MicroRNAs (miRNAs) are noncoding RNA molecules that regulate gene expression post-transcriptionally and influence numerous biological processes. Aberrant miRNA expression is linked to diseases such as diabetes mellitus; indeed, miRNAs regulate pancreatic islet inflammation in both type 1 (T1D) and type 2 diabetes (T2D). Traditionally, miRNA research has focused on canonical sequences and offers a two-layer view - from expression to function. However, advances in RNA sequencing have revealed miRNA variants, called isomiRs, that arise from alternative processing or modifications of canonical sequences. This introduces a three-layer view - from expression, through sequence modifications, to function. We discuss the potential link between cellular stresses and isomiR biogenesis, and how this association could improve our knowledge of islet inflammation and dysfunction.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"623-637"},"PeriodicalIF":11.4,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142632068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jingjuan Chen, James F Markworth, Christina Ferreira, Chi Zhang, Shihuan Kuang
{"title":"Lipid droplets as cell fate determinants in skeletal muscle.","authors":"Jingjuan Chen, James F Markworth, Christina Ferreira, Chi Zhang, Shihuan Kuang","doi":"10.1016/j.tem.2024.10.006","DOIUrl":"10.1016/j.tem.2024.10.006","url":null,"abstract":"<p><p>Lipid droplets (LDs) are dynamic organelles that communicate with other cellular components to orchestrate energetic homeostasis and signal transduction. In skeletal muscle, the presence and importance of LDs have been widely studied in myofibers of both rodents and humans under physiological conditions and in metabolic disorders. However, the role of LDs in myogenic stem cells has only recently begun to be unveiled. In this review we briefly summarize the process of LD biogenesis and degradation in the most prevalent model. We then review recent knowledge on LDs in skeletal muscle and muscle stem cells. We further introduce advanced methodologies for LD imaging and mass spectrometry that have propelled our understanding of the dynamics and heterogeneity of LDs.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"645-659"},"PeriodicalIF":11.4,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12116854/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142755918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Widening research horizons on metabolic dysfunction-associated steatotic liver disease and cancer.","authors":"Amedeo Lonardo, Norbert Stefan, Alessandro Mantovani","doi":"10.1016/j.tem.2024.12.009","DOIUrl":"10.1016/j.tem.2024.12.009","url":null,"abstract":"<p><p>Liver fibrosis and biological sex variably modulate the risks of hepatocellular carcinoma (HCC) and extrahepatic cancers (EHCs) arising in the context of metabolic dysfunction-associated steatotic liver disease (MASLD). Here, we highlight how these variables may have implications in the setting of chemoprevention and precision medicine approaches in MASLD and guide additional research.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"610-613"},"PeriodicalIF":11.4,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Braeden T Charlton, Richie P Goulding, Richard T Jaspers, Brent Appelman, Michèle van Vugt, Rob C I Wüst
{"title":"Skeletal muscle adaptations and post-exertional malaise in long COVID.","authors":"Braeden T Charlton, Richie P Goulding, Richard T Jaspers, Brent Appelman, Michèle van Vugt, Rob C I Wüst","doi":"10.1016/j.tem.2024.11.008","DOIUrl":"10.1016/j.tem.2024.11.008","url":null,"abstract":"<p><p>When acute SARS-CoV-2 infections cause symptoms that persist longer than 3 months, this condition is termed long COVID. Symptoms experienced by patients often include myalgia, fatigue, brain fog, cognitive impairments, and post-exertional malaise (PEM), which is the worsening of symptoms following mental or physical exertion. There is little consensus on the pathophysiology of exercise-induced PEM and skeletal-muscle-related symptoms. In this opinion article we highlight intrinsic mitochondrial dysfunction, endothelial abnormalities, and a muscle fiber type shift towards a more glycolytic phenotype as main contributors to the reduced exercise capacity in long COVID. The mechanistic trigger for physical exercise to induce PEM is unknown, but rapid skeletal muscle tissue damage and intramuscular infiltration of immune cells contribute to PEM-related symptoms.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"614-622"},"PeriodicalIF":11.4,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142856828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}