Jin Ma, Annie Yujin Son, Youlim Son, Ping-Yuan Wang, Paul M Hwang
{"title":"Mitochondrial innate immune signaling in skeletal muscle adaptation to exercise.","authors":"Jin Ma, Annie Yujin Son, Youlim Son, Ping-Yuan Wang, Paul M Hwang","doi":"10.1016/j.tem.2025.05.004","DOIUrl":"https://doi.org/10.1016/j.tem.2025.05.004","url":null,"abstract":"<p><p>Exercise-induced inflammation is regarded as a response to muscle damage from mechanical stress, but controlled immune signaling can be beneficial by promoting metabolic adaptation which, for example, decreases obesity and lowers the risk of diabetes. In addition to oxidative metabolism, mitochondria play a central role in initiating innate immune signaling. We review recent work that has identified the cGAS-STING-NF-κB signaling pathway, activated by the downregulation of mitochondrial proteins CHCHD4 and TRIAP1, as mediating skeletal muscle adaptation to exercise training as well as potentially promoting cellular resilience to environmental stresses. Notably, CHCHD4 haploinsufficiency prevents obesity in aging mice; therefore, this innate immune signaling pathway could be targeted to achieve some of the health benefits of exercise.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144295311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Uridine.","authors":"Julia Ugras, Costas A Lyssiotis","doi":"10.1016/j.tem.2025.05.006","DOIUrl":"https://doi.org/10.1016/j.tem.2025.05.006","url":null,"abstract":"","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144287051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The trade-off between reproduction and resilience.","authors":"Liankui Zhou, Ying Liu","doi":"10.1016/j.tem.2025.05.003","DOIUrl":"https://doi.org/10.1016/j.tem.2025.05.003","url":null,"abstract":"<p><p>The mitochondrial unfolded protein response (UPR<sup>mt</sup>) is a transcriptional program that alleviates mitochondrial dysfunction by facilitating the recovery of the mitochondrial network. In Caenorhabditis elegans, reproductive maturity leads to suppression of the UPR<sup>mt</sup>, suggesting a trade-off between maintenance of stress resilience and fertility. Here, we examine emerging evidence suggesting that the reproduction-associated suppression of UPR<sup>mt</sup> is a representative example of the physiological costs of reproduction. We focus on the germline-to-soma intertissue signaling mechanisms recently identified in C. elegans, which modulate systemic physiological responses during reproduction. These findings not only illuminate the trade-offs between stress resistance and reproductive capacity but also underscore the broader implications of intertissue communication in coordinating resource allocation.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144276721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Almudena Veiga-Lopez, Elana R Elkin, Sean M Harris, Bevin E Blake, Alison G Paquette, Lauren M Aleksunes, Phoebe A Stapleton
{"title":"Current approaches and advances in placental toxicology.","authors":"Almudena Veiga-Lopez, Elana R Elkin, Sean M Harris, Bevin E Blake, Alison G Paquette, Lauren M Aleksunes, Phoebe A Stapleton","doi":"10.1016/j.tem.2025.05.001","DOIUrl":"https://doi.org/10.1016/j.tem.2025.05.001","url":null,"abstract":"<p><p>Despite the crucial role of the placenta in supporting pregnancy and fetal development, research into its susceptibility to environmental exposures has been limited by methodological challenges. We review diverse approaches to studying placental biology and responses to chemical exposures, and provide a comprehensive assessment of traditional and emerging methodologies. Beginning with an overview of placental biology and species differences, we evaluate in vivo and in vitro models, and discuss their strengths and limitations. We examine advances, including placental transfer models, toxicokinetic frameworks, and 3D microphysiological systems, for their potential to address current gaps. Last, we consider molecular epidemiology and high-throughput analyses as complementary strategies. Together, these tools support better experimental design and enhance our understanding of placental vulnerability to chemical exposures.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144235964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juan Wang, Huiling Guo, Lang-Fan Zheng, Peng Li, Tong-Jin Zhao
{"title":"Context-specific fatty acid uptake is a finely-tuned multi-level effort.","authors":"Juan Wang, Huiling Guo, Lang-Fan Zheng, Peng Li, Tong-Jin Zhao","doi":"10.1016/j.tem.2024.10.001","DOIUrl":"10.1016/j.tem.2024.10.001","url":null,"abstract":"<p><p>Fatty acids (FAs) are essential nutrients that play multiple roles in cellular activities. To meet cell-specific needs, cells exhibit differential uptake of FAs in diverse physiological or pathological contexts, coordinating to maintain metabolic homeostasis. Cells tightly regulate the localization and transcription of CD36 and other key proteins that transport FAs across the plasma membrane in response to different stimuli. Dysregulation of FA uptake results in diseases such as obesity, steatotic liver, heart failure, and cancer progression. Targeting FA uptake might provide potential therapeutic strategies for metabolic diseases and cancer. Here, we review recent advances in context-specific regulation of FA uptake, focusing on the regulation of CD36 in metabolic organs and other cells.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"577-590"},"PeriodicalIF":11.4,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142569951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Casper M Sigvardsen, Michael M Richter, Sarah Engelbeen, Maximilian Kleinert, Erik A Richter
{"title":"GDF15 is still a mystery hormone.","authors":"Casper M Sigvardsen, Michael M Richter, Sarah Engelbeen, Maximilian Kleinert, Erik A Richter","doi":"10.1016/j.tem.2024.09.002","DOIUrl":"10.1016/j.tem.2024.09.002","url":null,"abstract":"<p><p>Growth differentiation factor 15 (GDF15) is a member of the transforming growth factor-β (TGF-β) superfamily. Despite its identification over 20 years ago, the functions of GDF15 remain complex and not fully elucidated. Its concentration in plasma varies widely depending on the physiological and pathophysiological state of the organism. GDF15 has been described to regulate food intake and insulin sensitivity in rodents via the GDNF family receptor α-like (GFRAL) receptor, and to be elevated in pregnancy and many disease states and decreased in physically fit individuals. We discuss the latest developments in the regulation of GDF15 secretion and its diverse physiological effects, and touch upon possible GFRAL-independent effects of GDF15. In addition, we discuss the effects of proteins and peptides derived from the same precursor protein as GDF15.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"591-601"},"PeriodicalIF":11.4,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142548947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria Lastra Cagigas, Isabella De Ciutiis, Andrius Masedunskas, Luigi Fontana
{"title":"Dietary and pharmacological energy restriction and exercise for healthspan extension.","authors":"Maria Lastra Cagigas, Isabella De Ciutiis, Andrius Masedunskas, Luigi Fontana","doi":"10.1016/j.tem.2025.04.001","DOIUrl":"10.1016/j.tem.2025.04.001","url":null,"abstract":"<p><p>Extending healthspan - the years lived in optimal health - holds transformative potential to reduce chronic diseases and healthcare costs. Dietary restriction (DR), particularly when combined with nutrient-rich diets and exercise, is among the most effective, evidence-based strategies for enhancing metabolic health and longevity. By targeting fundamental pathways, it mitigates the onset and progression of obesity, type 2 diabetes (T2D), cardiovascular disease (CVD), neurodegeneration, and cancer. This review synthesizes human data on the impact of DR and exercise on metabolic and age-related diseases, while emphasizing key biological mechanisms such as nutrient sensing, insulin sensitivity, inflammation, mitochondrial function, and gut microbiota. We also examine the emerging role of pharmacologically induced DR, focusing on glucagon-like peptide 1 (GLP-1) receptor agonists (RAs) that partially mimic DR and present opportunities for chronic disease prevention.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"521-545"},"PeriodicalIF":11.4,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143992134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Srishti Sinha, Samantha L Huey, Alpana P Shukla, Rebecca Kuriyan, Julia L Finkelstein, Saurabh Mehta
{"title":"Connecting precision nutrition with the Food is Medicine approach.","authors":"Srishti Sinha, Samantha L Huey, Alpana P Shukla, Rebecca Kuriyan, Julia L Finkelstein, Saurabh Mehta","doi":"10.1016/j.tem.2024.08.012","DOIUrl":"10.1016/j.tem.2024.08.012","url":null,"abstract":"<p><p>Two initiatives are reshaping how we can approach and address the persistent and widely prevalent challenge of malnutrition, the leading global risk factor for morbidity and mortality. First is the focus on precision nutrition to identify inter- and intra-individual variation in our responses to diet, and its determinants. Second is the Food is Medicine (FIM) approach, an umbrella term for programs and services that link nutrition and health through the provision of food (e.g., tailored meals, produce prescriptions) and access to healthcare services. This article outlines how interventions and programs using FIM can synergize with precision nutrition approaches to make individual- or population-level tailored nutrition accessible and affordable, help to reduce the risk of metabolic diseases, and improve quality of life.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"511-520"},"PeriodicalIF":11.4,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142332366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Herbert Herzog, Lei Zhang, Luigi Fontana, G Gregory Neely
{"title":"Impact of non-sugar sweeteners on metabolism beyond sweet taste perception.","authors":"Herbert Herzog, Lei Zhang, Luigi Fontana, G Gregory Neely","doi":"10.1016/j.tem.2024.10.008","DOIUrl":"10.1016/j.tem.2024.10.008","url":null,"abstract":"<p><p>Non-sugar sweeteners (NSS), low- or no-calorie alternatives to sugar, are marketed for weight loss and improved blood glucose control in people with diabetes. However, their health effects remain controversial. This review provides a brief overview of sweet taste perception and summarizes experimental findings of the impact of NSS on cardiometabolic health in animal models and humans. We also review evidence suggesting that many NSS are not metabolically inert, highlighting the challenges in related human studies. Given the conflicting and unclear data on health outcomes, additional mechanistic studies, particularly in animal models, are necessary to clarify how NSS influence feeding behaviors and energy homoeostasis.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"563-576"},"PeriodicalIF":11.4,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142649730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cholic acid.","authors":"Xi Luo, Kai Wang, Changtao Jiang","doi":"10.1016/j.tem.2024.11.007","DOIUrl":"10.1016/j.tem.2024.11.007","url":null,"abstract":"","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"602-603"},"PeriodicalIF":11.4,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142819779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}