{"title":"More than carriers, orosomucoids are key metabolic modulators.","authors":"Mi Jeong Heo, Inyoung Cheon, Kang Ho Kim","doi":"10.1016/j.tem.2024.11.015","DOIUrl":"10.1016/j.tem.2024.11.015","url":null,"abstract":"<p><p>Orosomucoids (ORMs) have historically been considered as carriers involved in drug and lipid delivery. However, recent studies indicate ORM2 as a hepatokine involved in metabolic regulation. Here, we highlight the functions of ORM2 in controlling metabolic health and disease, focusing on its newly discovered regulatory mechanisms.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"507-510"},"PeriodicalIF":11.4,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12133447/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142866423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Insights from omics research on plant-based diets and cardiometabolic health.","authors":"Hyunju Kim, Casey M Rebholz","doi":"10.1016/j.tem.2025.01.007","DOIUrl":"10.1016/j.tem.2025.01.007","url":null,"abstract":"<p><p>Plant-based diets emphasize higher intake of plant foods and are low in animal products. Individuals following plant-based diets have a lower risk of chronic conditions; however, the mechanisms underlying these associations are not completely understood. Omics data have opened opportunities to investigate the mechanistic effect of dietary intake on health outcomes. Here, we review omics analyses of plant-based diets in feeding and observational studies, showing that although metabolomics and proteomics identified candidate biomarkers and distinct pathways modifiable by plant-based diets, current evidence from transcriptomics and methylomics is limited. We also argue that future studies should examine how unhealthful plant-based diets are associated with a higher risk of health outcomes and integrate multiple omics data from feeding studies to provide further mechanistic insights.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"546-562"},"PeriodicalIF":11.4,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12133424/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143473216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paniz Jasbi, Alex E Mohr, Meghana Hosahalli Shivananda Murthy, Judith Klein-Seetharaman
{"title":"Understanding metabolic resilience by unraveling temporal dynamics of cellular responses.","authors":"Paniz Jasbi, Alex E Mohr, Meghana Hosahalli Shivananda Murthy, Judith Klein-Seetharaman","doi":"10.1016/j.tem.2025.04.006","DOIUrl":"https://doi.org/10.1016/j.tem.2025.04.006","url":null,"abstract":"<p><p>Metabolic resilience is essential for organismal homeostasis under diverse external pressures, because responding and adapting to stressors requires energy and drives changes at every omic level. The goal of this paper is to synthesize recent advances in understanding the intricate interplay, especially between metabolic and transcriptomic responses, involved in addressing external perturbations. We highlight the importance of timing and sequence in immediate and long-term adjustments; furthermore, we underscore the evolutionary significance of metabolic resilience and its potential for developing innovative therapeutic interventions, making it a timely contribution to contemporary biological, biomedical, and environmental research fields.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144163252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"TREM2-expressing macrophages in liver diseases.","authors":"Xiaochen Wang, Zhiyu Qiu, Zhenyu Zhong, Shuang Liang","doi":"10.1016/j.tem.2025.04.009","DOIUrl":"https://doi.org/10.1016/j.tem.2025.04.009","url":null,"abstract":"<p><p>Metabolic dysfunction-associated steatotic liver disease (MASLD) affects over 30% of the global population and spans a spectrum of liver abnormalities, including simple steatosis, inflammation, fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Recent studies have identified triggering receptors expressed on myeloid cells 2 (TREM2)-expressing macrophages as key regulators of MASLD progression. TREM2 plays a pivotal role in regulating macrophage-mediated processes such as efferocytosis, inflammatory control, and fibrosis resolution. Additionally, soluble TREM2 (sTREM2) was proposed as a noninvasive biomarker for diagnosing and monitoring MASLD progression. However, the molecular mechanisms through which TREM2 influences MASLD pathogenesis remain incompletely understood. This review summarizes the current understanding of TREM2-expressing macrophages in MASLD, with the goal of illuminating future research and guiding the development of innovative therapeutic strategies targeting TREM2 signaling pathways.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144081750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Can ferroptosis be a target for reproductive health?","authors":"Mengchun Hu, Yingying Qin, Xue Jiao","doi":"10.1016/j.tem.2024.11.011","DOIUrl":"10.1016/j.tem.2024.11.011","url":null,"abstract":"<p><p>Ferroptosis has been implicated in several reproductive disorders, but the underlying mechanisms remain unknown; thus, interventions targeting this pathway are lacking. Here we summarize the emerging findings on ferroptosis in reproductive biology and corresponding disorders, and highlight perspectives and challenges on future ferroptosis research with potential clinical applications.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"398-402"},"PeriodicalIF":11.4,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142873503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A new clinical age of aging research.","authors":"Zhen Zhang, Renlei Yang, Zhike Zi, Baohua Liu","doi":"10.1016/j.tem.2024.08.004","DOIUrl":"10.1016/j.tem.2024.08.004","url":null,"abstract":"<p><p>Aging is a major risk factor for a variety of diseases, thus, translation of aging research into practical applications is driven by the unmet need for existing clinical therapeutic options. Basic and translational research efforts are converging at a critical stage, yielding insights into how fundamental aging mechanisms are used to identify promising geroprotectors or therapeutics. This review highlights several research areas from a clinical perspective, including senescent cell targeting, alleviation of inflammaging, and optimization of metabolism with endogenous metabolites or precursors. Refining our understanding of these key areas, especially from the clinical angle, may help us to better understand and attenuate aging processes and improve overall health outcomes.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"440-458"},"PeriodicalIF":11.4,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142127359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Shared metabolic and stress pathways to neonatal adiposity.","authors":"Sonja Entringer, Gernot Desoye","doi":"10.1016/j.tem.2024.11.012","DOIUrl":"10.1016/j.tem.2024.11.012","url":null,"abstract":"<p><p>Perceived stress levels, prevalence of pregnancies complicated by metabolic disorders, and childhood obesity have been increasing steadily. We here propose a pathway integrating stress-responsive biological systems into the established effects of maternal diabetes and obesity during pregnancy, overall exerting a combined contribution to offspring adiposity risk.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"392-394"},"PeriodicalIF":11.4,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142866428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sifan Rong, Yixuan Fu, Yue Zhao, Wencheng Zhu, Liangshan Mu
{"title":"How purine metabolites impact reproduction.","authors":"Sifan Rong, Yixuan Fu, Yue Zhao, Wencheng Zhu, Liangshan Mu","doi":"10.1016/j.tem.2024.08.010","DOIUrl":"10.1016/j.tem.2024.08.010","url":null,"abstract":"<p><p>Purine metabolism is one of the core biochemical processes essential for cell survival and function. During development, purines are involved in germ cell development, ovarian function, and pregnancy outcomes. Here, we discuss the relationships between purine metabolism and reproductive health, offering insights into the future directions of the field.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"395-397"},"PeriodicalIF":11.4,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142301093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chuqing Wu, Dan Chen, Michael B Stout, Meng Wu, Shixuan Wang
{"title":"Hallmarks of ovarian aging.","authors":"Chuqing Wu, Dan Chen, Michael B Stout, Meng Wu, Shixuan Wang","doi":"10.1016/j.tem.2025.01.005","DOIUrl":"10.1016/j.tem.2025.01.005","url":null,"abstract":"<p><p>Ovarian aging is considered to be the pacemaker of female aging, and is linked to various comorbidities such as osteoporosis, cardiovascular diseases, and cognitive decline. Many efforts have been made to determine the mechanisms underlying ovarian aging, but their potential to act as hallmarks to predict and intervene in this process currently remains unclear. In this review we propose nine hallmarks as common features of ovarian aging: genomic instability, telomere attrition, epigenetic alterations, impaired autophagy, cellular senescence, deregulated nutrient-sensing, mitochondrial dysfunction, oxidative stress, and chronic inflammation. Understanding the interaction between these hallmarks poses a significant challenge but may also pave the way to the identification of pharmaceutical targets that can attenuate ovarian aging.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"418-439"},"PeriodicalIF":11.4,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143505964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christopher Casciaro, Hirotaka Hamada, Enrrico Bloise, Stephen G Matthews
{"title":"The paternal contribution to shaping the health of future generations.","authors":"Christopher Casciaro, Hirotaka Hamada, Enrrico Bloise, Stephen G Matthews","doi":"10.1016/j.tem.2024.10.007","DOIUrl":"10.1016/j.tem.2024.10.007","url":null,"abstract":"<p><p>Paternal health and exposure to adverse environments in the period prior to conception have a profound impact on future generations. Adversities such as stress, diet, and toxicants influence offspring health. Emerging evidence indicates that epigenetic mechanisms including noncoding RNA, DNA methylation, and chromatin remodelling mediate these effects. Preclinical studies have contributed to advancing mechanistic understanding in the field; however, human research is limited and primarily observational. Here, we discuss the evidence linking paternal to offspring health and advocate for further research in this area, which may ultimately inform policy and healthcare guidelines to improve paternal preconception health and offspring outcomes.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"459-471"},"PeriodicalIF":11.4,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142677819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}