Trends in Endocrinology and Metabolism最新文献

筛选
英文 中文
Lipids guide T cell antitumor immunity by shaping their metabolic and functional fitness. 脂质通过塑造T细胞的代谢和功能适应性来引导T细胞抗肿瘤免疫。
IF 12.6 1区 医学
Trends in Endocrinology and Metabolism Pub Date : 2025-09-01 Epub Date: 2024-12-31 DOI: 10.1016/j.tem.2024.11.014
Letizia Rumiano, Teresa Manzo
{"title":"Lipids guide T cell antitumor immunity by shaping their metabolic and functional fitness.","authors":"Letizia Rumiano, Teresa Manzo","doi":"10.1016/j.tem.2024.11.014","DOIUrl":"10.1016/j.tem.2024.11.014","url":null,"abstract":"<p><p>Lipids are metabolic messengers essential for energy production, membrane structure, and signal transduction. Beyond their recognized role, lipids have emerged as metabolic rheostats of T cell responses, with distinct species differentially modulating CD8+ T cell (CTL) fate and function. Indeed, lipids can influence T cell signaling by altering their membrane composition; in addition, they can affect the differentiation path of T cells through cellular metabolism. This Review discusses the ability of lipids to shape T cell phenotypes and functions. Based on this link between lipid metabolism, metabolic fitness and immunosurveillance, we suggest that lipid could be rationally integrated in the context of immunotherapies to fine-tune fitness and function of adoptive T cell therapy (ACT) products.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"802-814"},"PeriodicalIF":12.6,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142916048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tumor-intrinsic regulators of the immune-cold microenvironment of prostate cancer. 前列腺癌免疫-冷微环境的肿瘤内在调节因子。
IF 12.6 1区 医学
Trends in Endocrinology and Metabolism Pub Date : 2025-09-01 Epub Date: 2025-01-02 DOI: 10.1016/j.tem.2024.12.003
Lourdes Brea, Jindan Yu
{"title":"Tumor-intrinsic regulators of the immune-cold microenvironment of prostate cancer.","authors":"Lourdes Brea, Jindan Yu","doi":"10.1016/j.tem.2024.12.003","DOIUrl":"10.1016/j.tem.2024.12.003","url":null,"abstract":"<p><p>Prostate cancer (PC) is a notoriously immune-cold tumor in that it often lacks substantial infiltration by antitumor immune cells, and in advanced diseases such as neuroendocrine PC, it could be devoid of immune cells. A majority of PC patients thus have, unfortunately, been unable to benefit from recent advances in immunotherapies. What causes this immunosuppressive microenvironment around PC? In this review, we discuss various genetic and epigenetic regulators intrinsic to prostate tumor cells that could have profound effects on the tumor microenvironment, thus contributing to this immune-cold status. It will be essential to target the cancer cells themselves in order to change the tumor microenvironment to harness existing and developing immunotherapies that had great success in other tumors.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"855-866"},"PeriodicalIF":12.6,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12214000/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142928775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Systemic metabolic crosstalk as driver of cancer cachexia. 系统性代谢串扰作为癌症恶病质的驱动因素。
IF 12.6 1区 医学
Trends in Endocrinology and Metabolism Pub Date : 2025-09-01 Epub Date: 2025-01-04 DOI: 10.1016/j.tem.2024.12.005
Elisabeth Wyart, Giovanna Carrà, Elia Angelino, Fabio Penna, Paolo E Porporato
{"title":"Systemic metabolic crosstalk as driver of cancer cachexia.","authors":"Elisabeth Wyart, Giovanna Carrà, Elia Angelino, Fabio Penna, Paolo E Porporato","doi":"10.1016/j.tem.2024.12.005","DOIUrl":"10.1016/j.tem.2024.12.005","url":null,"abstract":"<p><p>Cachexia is a complex metabolic disorder characterized by negative energy balance due to increased consumption and lowered intake, leading to progressive tissue wasting and inefficient energy distribution. Once considered as passive bystander, metabolism is now acknowledged as a regulator of biological functions and disease progression. This shift in perspective mirrors the evolving understanding of cachexia itself, no longer viewed merely as a secondary consequence of cancer but as an active process. However, metabolic dysregulations in cachexia are currently studied in an organ-specific manner, failing to be fully integrated into a comprehensive framework that explains their functional roles in disease progression. Thus, in this review, we aim to provide a general overview of the various metabolic alterations with a potential systemic impact.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"815-826"},"PeriodicalIF":12.6,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142933629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Brain myelin as a deficient energy source in aging and disease. 脑髓磷脂是衰老和疾病中缺乏的能量来源。
IF 12.6 1区 医学
Trends in Endocrinology and Metabolism Pub Date : 2025-09-01 Epub Date: 2025-08-12 DOI: 10.1016/j.tem.2025.07.006
Carlos Matute, Alexei Verkhratsky
{"title":"Brain myelin as a deficient energy source in aging and disease.","authors":"Carlos Matute, Alexei Verkhratsky","doi":"10.1016/j.tem.2025.07.006","DOIUrl":"10.1016/j.tem.2025.07.006","url":null,"abstract":"<p><p>Central nervous system (CNS) myelin may act as a dynamic energy store that supports brain metabolism; its consumption and replenishment is a newly recognized form of metabolic plasticity aimed at maintaining brain function upon limited glucose supply. In this forum article we propose that myelin dysfunctions may affect human health in aging and neurodegenerative diseases.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"781-784"},"PeriodicalIF":12.6,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144849608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Circadian disruption and its impact on the cardiovascular system. 昼夜节律紊乱及其对心血管系统的影响。
IF 12.6 1区 医学
Trends in Endocrinology and Metabolism Pub Date : 2025-09-01 Epub Date: 2024-12-19 DOI: 10.1016/j.tem.2024.11.010
Morag J Young, Seamus Heanue, Monica Kanki, Kegan J Moneghetti
{"title":"Circadian disruption and its impact on the cardiovascular system.","authors":"Morag J Young, Seamus Heanue, Monica Kanki, Kegan J Moneghetti","doi":"10.1016/j.tem.2024.11.010","DOIUrl":"10.1016/j.tem.2024.11.010","url":null,"abstract":"<p><p>Circadian rhythms are highly conserved biorhythms of ~24 h that govern many fundamental biological processes, including cardiovascular (CV) homeostasis. Disrupting the timing of cellular oscillators promotes cellular stress, and induction of pathogenic pathways underpins the pathogenesis of many CV diseases (CVDs). Thus, shift work, late eating, sleep disturbances, and other disruptors can result in an elevated risk of heart disease and increased incidence of adverse CV events. Here, we discuss the importance of circadian rhythms for CV homeostasis, recent developments in understanding the impact of disrupted circadian rhythms on CV health and disease progression, and how understanding the interactions between circadian and CV physiology is crucial for improving interventions to mitigate CVD, especially in populations impacted by disrupted circadian rhythms.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"842-854"},"PeriodicalIF":12.6,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142873441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decoding microbial volatile signals in host-microbiome crosstalk. 宿主-微生物组串扰中微生物挥发性信号的解码。
IF 12.6 1区 医学
Trends in Endocrinology and Metabolism Pub Date : 2025-08-30 DOI: 10.1016/j.tem.2025.08.004
Andrea Dell'Olio, Franco Biasioli, Vincenzo Fogliano, Josep Rubert
{"title":"Decoding microbial volatile signals in host-microbiome crosstalk.","authors":"Andrea Dell'Olio, Franco Biasioli, Vincenzo Fogliano, Josep Rubert","doi":"10.1016/j.tem.2025.08.004","DOIUrl":"https://doi.org/10.1016/j.tem.2025.08.004","url":null,"abstract":"<p><p>The human gut microbiome is a complex microbial ecosystem which has a profound impact on host health and disease. The research focus in this area is rapidly moving from taxonomy to functionality, elucidating the biological role of small molecules produced by the gut microbiome in regulating host metabolism. Among these, microbial volatile organic compounds (mVOCs) play several roles in bacterial communication and microbe-host signaling. Volatilomics, the comprehensive study of volatile metabolites, is emerging as a powerful tool for discovering and investigating these interactions. In this review we examine the current understanding of mVOCs in the gut and highlight how dedicated in vitro and ex vivo volatilomics experiments, alongside in vivo studies, can uncover the biological roles for these emerging small molecules.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":12.6,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144979028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploiting metabolic vulnerabilities to improve cancer therapeutics. 利用代谢脆弱性改善癌症治疗。
IF 12.6 1区 医学
Trends in Endocrinology and Metabolism Pub Date : 2025-08-28 DOI: 10.1016/j.tem.2025.08.002
Ibrahim H Ibrahim, Cheng-Han Lin, Ming Zhou, Jer-Yen Yang, Robert W Sobol, Ming Tan
{"title":"Exploiting metabolic vulnerabilities to improve cancer therapeutics.","authors":"Ibrahim H Ibrahim, Cheng-Han Lin, Ming Zhou, Jer-Yen Yang, Robert W Sobol, Ming Tan","doi":"10.1016/j.tem.2025.08.002","DOIUrl":"https://doi.org/10.1016/j.tem.2025.08.002","url":null,"abstract":"<p><p>Over the past decade, our understanding of cancer metabolism has advanced significantly, revealing a complex and dynamic landscape of metabolic reprogramming that facilitates tumor progression and promotes therapeutic resistance. To survive under stressful conditions, cancer cells undergo crucial metabolic adaptations while also creating vulnerabilities that can be exploited for therapeutic purposes. Here, we discuss the evolving understanding of cancer cell metabolic adaptation in the tumor environment and the recent advances in identifying potential therapeutic mechanisms, including synthetic lethality, post-translational modifications (PTMs), as well as the interplay between metabolism and epigenetics. Furthermore, we discuss the integration of metabolic targeting with immune-based therapies and provide insights underscoring the potential of metabolic interventions to resensitize drug-resistant cancers and enhance efficacy for cancer treatment.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":12.6,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144979000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Redefining senescence through hepatocyte fate changes in liver diseases. 通过肝脏疾病中肝细胞命运的改变重新定义衰老。
IF 12.6 1区 医学
Trends in Endocrinology and Metabolism Pub Date : 2025-08-28 DOI: 10.1016/j.tem.2025.08.003
David S Umbaugh, Anna Mae Diehl, Kuo Du
{"title":"Redefining senescence through hepatocyte fate changes in liver diseases.","authors":"David S Umbaugh, Anna Mae Diehl, Kuo Du","doi":"10.1016/j.tem.2025.08.003","DOIUrl":"10.1016/j.tem.2025.08.003","url":null,"abstract":"<p><p>Hepatocyte senescence is increasingly recognized as a key contributor to liver pathophysiology. While traditionally viewed as a state of permanent growth arrest, hepatocyte senescence is now understood to be more dynamic and potentially reversible, particularly during liver repair. In this opinion article, we propose reframing senescence as a continuum rather than a terminal fate. We focus on early stress-responsive states, especially those marked by p21 expression, which may be adaptive or pro-regenerative depending on the context. We highlight the roles of p21-associated secretory phenotypes (PASPs), senescence-associated secretory phenotypes (SASPs), epithelial plasticity, and partial epithelial-to-mesenchymal transition (EMT) in modulating hepatocyte behavior, immune surveillance, and cancer risk. Viewing hepatocyte senescence as a trajectory opens new opportunities for context-specific and temporally targeted therapeutic strategies in liver disease.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":12.6,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12404671/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144979040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Can brain neurons change identity? Lessons from obesity. 大脑神经元能改变身份吗?肥胖的教训。
IF 12.6 1区 医学
Trends in Endocrinology and Metabolism Pub Date : 2025-08-01 Epub Date: 2024-12-05 DOI: 10.1016/j.tem.2024.11.006
Jean Charles Nicolas, Thomas H Lee, Carmelo Quarta
{"title":"Can brain neurons change identity? Lessons from obesity.","authors":"Jean Charles Nicolas, Thomas H Lee, Carmelo Quarta","doi":"10.1016/j.tem.2024.11.006","DOIUrl":"10.1016/j.tem.2024.11.006","url":null,"abstract":"<p><p>It has long been thought that the functional identity of mammalian brain neurons is programmed during development and remains stable throughout adult life; however, certain populations of neurons continue to express active regulators of neuronal identity into adulthood. Prolonged exposure to diet-induced metabolic stress induces features of neuronal identity modification in adult mice, and maladaptive changes in neuronal identity maintenance have been linked to cognitive impairment in humans suffering from neurodegenerative diseases often associated with obesity. Here we discuss how, by unraveling the neurological roots of obesity, we may solve the puzzle of whether mammalian brain neurons retain identity plasticity into adulthood, while advancing knowledge of the pathogenic mechanisms at the interface of metabolic and neurodegenerative disorders.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"699-709"},"PeriodicalIF":12.6,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142792854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring tryptophan metabolism in cardiometabolic diseases. 探索色氨酸在心脏代谢疾病中的代谢。
IF 12.6 1区 医学
Trends in Endocrinology and Metabolism Pub Date : 2025-08-01 Epub Date: 2024-12-17 DOI: 10.1016/j.tem.2024.11.009
Nirmala Mouttoulingam, Soraya Taleb
{"title":"Exploring tryptophan metabolism in cardiometabolic diseases.","authors":"Nirmala Mouttoulingam, Soraya Taleb","doi":"10.1016/j.tem.2024.11.009","DOIUrl":"10.1016/j.tem.2024.11.009","url":null,"abstract":"<p><p>Tryptophan (Trp) metabolism is linked to health and disease, with indoleamine 2,3-dioxygenase 1 (IDO) being a key enzyme in its breakdown outside the liver. This process produces metabolites that influence metabolic and inflammatory responses. A distinctive feature of the gut is its involvement in three major Trp catabolic pathways: the IDO-driven kynurenine pathway, bacteria-produced indoles, and serotonin. Dysregulation of these pathways is associated with gastrointestinal and chronic inflammatory diseases. Understanding these mechanisms could reveal how gut function affects overall systemic health and disease susceptibility. Here, we review current insights into Trp metabolism, its impact on host physiology and cardiometabolic diseases, and its role in the gut-periphery connection, highlighting its relevance for therapeutic innovation.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"733-743"},"PeriodicalIF":12.6,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142856823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信