Ruben Vazquez-Uribe, Karl Alex Hedin, Tine Rask Licht, Max Nieuwdorp, Morten O A Sommer
{"title":"Advanced microbiome therapeutics as a novel modality for oral delivery of peptides to manage metabolic diseases.","authors":"Ruben Vazquez-Uribe, Karl Alex Hedin, Tine Rask Licht, Max Nieuwdorp, Morten O A Sommer","doi":"10.1016/j.tem.2024.04.021","DOIUrl":"https://doi.org/10.1016/j.tem.2024.04.021","url":null,"abstract":"<p><p>The rising prevalence of metabolic diseases calls for innovative treatments. Peptide-based drugs have transformed the management of conditions such as obesity and type 2 diabetes. Yet, challenges persist in oral delivery of these peptides. This review explores the potential of 'advanced microbiome therapeutics' (AMTs), which involve engineered microbes for delivery of peptides in situ, thereby enhancing their bioavailability. Preclinical work on AMTs has shown promise in treating animal models of metabolic diseases, including obesity, type 2 diabetes, and metabolic dysfunction-associated steatotic liver disease. Outstanding challenges toward realizing the potential of AMTs involve improving peptide expression, ensuring predictable colonization control, enhancing stability, and managing safety and biocontainment concerns. Still, AMTs have potential for revolutionizing the treatment of metabolic diseases, potentially offering dynamic and personalized novel therapeutic approaches.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":10.9,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141088614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Why cells need iron: a compendium of iron utilisation.","authors":"Megan R Teh, Andrew E Armitage, Hal Drakesmith","doi":"10.1016/j.tem.2024.04.015","DOIUrl":"https://doi.org/10.1016/j.tem.2024.04.015","url":null,"abstract":"<p><p>Iron deficiency is globally prevalent, causing an array of developmental, haematological, immunological, neurological, and cardiometabolic impairments, and is associated with symptoms ranging from chronic fatigue to hair loss. Within cells, iron is utilised in a variety of ways by hundreds of different proteins. Here, we review links between molecular activities regulated by iron and the pathophysiological effects of iron deficiency. We identify specific enzyme groups, biochemical pathways, cellular functions, and cell lineages that are particularly iron dependent. We provide examples of how iron deprivation influences multiple key systems and tissues, including immunity, hormone synthesis, and cholesterol metabolism. We propose that greater mechanistic understanding of how cellular iron influences physiological processes may lead to new therapeutic opportunities across a range of diseases.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":10.9,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140960889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Krista A Varady, Mary-Claire Runchey, Sirimon Reutrakul, Alaina P Vidmar, Lisa S Chow
{"title":"Clinical potential of fasting in type 1 diabetes.","authors":"Krista A Varady, Mary-Claire Runchey, Sirimon Reutrakul, Alaina P Vidmar, Lisa S Chow","doi":"10.1016/j.tem.2024.01.007","DOIUrl":"10.1016/j.tem.2024.01.007","url":null,"abstract":"<p><p>Most adults with type 1 diabetes (T1DM) are either overweight or obese. As such, dietary management is recommended as an adjunct to insulin treatment to improve glycemic control and facilitate weight loss in these patients. Time-restricted eating (TRE) is a form of intermittent fasting that offers a simplified approach to treating obesity in T1DM. TRE typically involves restricting eating to 6 to 10 h per day, with water and medications allowed outside the eating window. This review examines the efficacy of TRE and other fasting protocols in improving weight and glycemic control in patients with obesity and T1DM. This review will also evaluate the safety of these regimens and provide advice to clinicians on implementing intermittent fasting in T1DM.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"413-424"},"PeriodicalIF":11.4,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139708593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mona Mashayekhi, Bilgunay Ilkin Safa, Matthew S C Gonzalez, Sangwon F Kim, Justin B Echouffo-Tcheugui
{"title":"Systemic and organ-specific anti-inflammatory effects of sodium-glucose cotransporter-2 inhibitors.","authors":"Mona Mashayekhi, Bilgunay Ilkin Safa, Matthew S C Gonzalez, Sangwon F Kim, Justin B Echouffo-Tcheugui","doi":"10.1016/j.tem.2024.02.003","DOIUrl":"10.1016/j.tem.2024.02.003","url":null,"abstract":"<p><p>Inflammation plays an essential role and is a common feature in the pathogenesis of many chronic diseases. The exact mechanisms through which sodium-glucose cotransporter-2 (SGLT2) inhibitors achieve their much-acclaimed clinical benefits largely remain unknown. In this review, we detail the systemic and tissue- or organ-specific anti-inflammatory effects of SGLT2 inhibitors using evidence from animal and human studies. We discuss the potential pathways through which SGLT2 inhibitors exert their anti-inflammatory effects, including oxidative stress, mitochondrial, and inflammasome pathways. Finally, we highlight the need for further investigation of the extent of the contribution of the anti-inflammatory effects of SGLT2 inhibition to improvements in cardiometabolic and renal outcomes in clinical studies.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"425-438"},"PeriodicalIF":11.4,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11096060/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139998315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mitochondrial dysfunction in lipid processing and gastrointestinal disorders.","authors":"Yan Hu, Hao Huang, Rong Xiang","doi":"10.1016/j.tem.2024.02.009","DOIUrl":"10.1016/j.tem.2024.02.009","url":null,"abstract":"<p><p>Mitochondrial dysfunctions predominantly cause encephalomyopathies with muscle atrophy and neurodegeneration. However, their impact on other tissues, particularly the gastrointestinal tract, requires further investigation. In a recent report in Nature, Moschandrea et al. used mice deficient in the mitochondrial aminoacyl-tRNA synthetase DARS2 to investigate the role of enterocytic mitochondria in dietary lipid processing and transport. Their work sheds light on the development of gastrointestinal disorders as a result of mitochondrial dysfunction.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"364-366"},"PeriodicalIF":11.4,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139991811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Current status and future perspectives of FGF21 analogues in clinical trials.","authors":"Zara Siu Wa Chui, Qing Shen, Aimin Xu","doi":"10.1016/j.tem.2024.02.001","DOIUrl":"10.1016/j.tem.2024.02.001","url":null,"abstract":"<p><p>Recent advances in fibroblast growth factor 21 (FGF21) biology and pharmacology have led to the development of several long-acting FGF21 analogues and antibody-based mimetics now in various phases of clinical trials for the treatment of obesity-related metabolic comorbidities. The efficacy of these FGF21 analogues/mimetics on glycaemic control and weight loss is rather mild and inconsistent; nevertheless, several promising therapeutic benefits have been reproducibly observed in most clinical studies, including amelioration of dyslipidaemia (particularly hypertriglyceridaemia) and hepatic steatosis, reduction of biomarkers of liver fibrosis and injury, and resolution of metabolic dysfunction-associated steatohepatitis (MASH). Evidence is emerging that combination therapy with FGF21 analogues and other hormones (such as glucagon-like peptide 1; GLP-1) can synergise their pharmacological benefits, thus maximising the therapeutic efficacy for obesity and its comorbidities.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"371-384"},"PeriodicalIF":11.4,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139998313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abigail Strefeler, Joan Blanco-Fernandez, Alexis A Jourdain
{"title":"Nucleosides are overlooked fuels in central carbon metabolism.","authors":"Abigail Strefeler, Joan Blanco-Fernandez, Alexis A Jourdain","doi":"10.1016/j.tem.2024.01.013","DOIUrl":"10.1016/j.tem.2024.01.013","url":null,"abstract":"<p><p>From our daily nutrition and synthesis within cells, nucleosides enter the bloodstream and circulate throughout the body and tissues. Nucleosides and nucleotides are classically viewed as precursors of nucleic acids, but recently they have emerged as a novel energy source for central carbon metabolism. Through catabolism by nucleoside phosphorylases, the ribose sugar group is released and can provide substrates for lower steps in glycolysis. In environments with limited glucose, such as at sites of infection or in the tumor microenvironment (TME), cells can use, and may even require, this alternative energy source. Here, we discuss the implications of these new findings in health and disease and speculate on the potential new roles of nucleosides and nucleic acids in energy metabolism.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"290-299"},"PeriodicalIF":10.9,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139998314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Context matters for addressing controversies in FGF21 biology.","authors":"Chih-Ting Wu, Karen K Ryan","doi":"10.1016/j.tem.2024.02.013","DOIUrl":"10.1016/j.tem.2024.02.013","url":null,"abstract":"<p><p>Recent discoveries by Solon-Biet and colleagues highlight the importance of nutritional context for addressing current controversies in Fibroblast Growth Factor 21 (FGF21) biology. Through a series of complex studies, the authors explored the physiological and pharmacological effects of FGF21 on feeding behavior and energy balance under differing nutritional and metabolic statuses.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"280-281"},"PeriodicalIF":10.9,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140023344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The landscape of fetus metabolism in maternal hyperglycemia.","authors":"Miranda E Kelly, Thomas F Martinez, Cholsoon Jang","doi":"10.1016/j.tem.2024.01.012","DOIUrl":"10.1016/j.tem.2024.01.012","url":null,"abstract":"<p><p>Maternal hyperglycemia contributes to abnormal fetal development; yet, how it affects fetal metabolism is poorly understood. Perez-Ramirez and colleagues recently provided a comprehensive metabolic atlas of fetal organs isolated from normal and diabetic pregnant mice, identifying novel metabolites and alterations in tissue glucose utilization throughout mid-to-late gestation by maternal hyperglycemia.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"282-284"},"PeriodicalIF":10.9,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11070186/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139716671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Regulated cell death in myocardial ischemia-reperfusion injury.","authors":"Qi Xiang, Xin Yi, Xue-Hai Zhu, Xiang Wei, Ding-Sheng Jiang","doi":"10.1016/j.tem.2023.10.010","DOIUrl":"10.1016/j.tem.2023.10.010","url":null,"abstract":"<p><p>Myocardial ischemia-reperfusion (I/R) injury most commonly occurs in coronary artery disease when prompt reperfusion is used to salvage the ischemic myocardium. Cardiomyocyte death is a significant component of myocardial I/R injury and its mechanism was previously thought to be limited to apoptosis and necrosis. With the discovery of novel types of cell death, ferroptosis, necroptosis, and pyroptosis have been shown to be involved in myocardial I/R. These new forms of regulated cell death cause cardiomyocyte loss and exacerbate I/R injury by affecting reactive oxygen species (ROS) generation, calcium stress, and inflammatory cascades, subsequently mediating adverse remodeling, cardiac dysfunction, and heart failure. Herein, we review the roles of ferroptosis, necroptosis, and pyroptosis in myocardial I/R and discuss their contribution to pathology.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"219-234"},"PeriodicalIF":10.9,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138048806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}