Chaimaa Tarzi, Guido Zampieri, Neil Sullivan, Claudio Angione
{"title":"Emerging methods for genome-scale metabolic modeling of microbial communities.","authors":"Chaimaa Tarzi, Guido Zampieri, Neil Sullivan, Claudio Angione","doi":"10.1016/j.tem.2024.02.018","DOIUrl":"10.1016/j.tem.2024.02.018","url":null,"abstract":"<p><p>Genome-scale metabolic models (GEMs) are consolidating as platforms for studying mixed microbial populations, by combining biological data and knowledge with mathematical rigor. However, deploying these models to answer research questions can be challenging due to the increasing number of available computational tools, the lack of universal standards, and their inherent limitations. Here, we present a comprehensive overview of foundational concepts for building and evaluating genome-scale models of microbial communities. We then compare tools in terms of requirements, capabilities, and applications. Next, we highlight the current pitfalls and open challenges to consider when adopting existing tools and developing new ones. Our compendium can be relevant for the expanding community of modelers, both at the entry and experienced levels.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"533-548"},"PeriodicalIF":10.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140871377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An adipoincretin effect links adipostasis with insulin secretion.","authors":"Giovanni Solinas, Barbara Becattini","doi":"10.1016/j.tem.2023.10.009","DOIUrl":"https://doi.org/10.1016/j.tem.2023.10.009","url":null,"abstract":"<p><p>The current paradigm for the insulin system focuses on the phenomenon of glucose-stimulated insulin secretion and insulin action on blood glucose control. This historical glucose-centric perspective may have introduced a conceptual bias in our understanding of insulin regulation. A body of evidence demonstrating that in vivo variations in blood glucose and insulin secretion can be largely dissociated motivated us to reconsider the fundamental design of the insulin system as a control system for metabolic homeostasis. Here, we propose that a minimal glucose-centric model does not accurately describe the physiological behavior of the insulin system and propose a new paradigm focusing on the effects of incretins, arguing that under fasting conditions, insulin is regulated by an adipoincretin effect.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":"35 6","pages":"466-477"},"PeriodicalIF":10.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141307437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gabriel O de Souza, Willian O Dos Santos, Jose Donato
{"title":"Ironing out obesity.","authors":"Gabriel O de Souza, Willian O Dos Santos, Jose Donato","doi":"10.1016/j.tem.2024.04.001","DOIUrl":"10.1016/j.tem.2024.04.001","url":null,"abstract":"<p><p>Obesity is associated with dysfunctions in hypothalamic neurons that regulate metabolism, including agouti-related protein (AgRP)-expressing neurons. In a recent article, Zhang et al. demonstrated that either diet- or genetically induced obesity promoted iron accumulation specifically in AgRP neurons. Preventing iron overload in AgRP neurons mitigated diet-induced obesity and related comorbidities in male mice.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"456-458"},"PeriodicalIF":10.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140869016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A unified model for regulating lipoprotein lipase activity.","authors":"Ren Zhang, Kezhong Zhang","doi":"10.1016/j.tem.2024.02.016","DOIUrl":"10.1016/j.tem.2024.02.016","url":null,"abstract":"<p><p>The regulation of triglyceride (TG) tissue distribution, storage, and utilization, a fundamental process of energy homeostasis, critically depends on lipoprotein lipase (LPL). We review the intricate mechanisms by which LPL activity is regulated by angiopoietin-like proteins (ANGPTL3, 4, 8), apolipoproteins (APOA5, APOC3, APOC2), and the cAMP-responsive element-binding protein H (CREBH). ANGPTL8 functions as a molecular switch, through complex formation, activating ANGPTL3 while deactivating ANGPTL4 in their LPL inhibition. The ANGPTL3-4-8 model integrates the roles of the aforementioned proteins in TG partitioning between white adipose tissue (WAT) and oxidative tissues (heart and skeletal muscles) during the feed/fast cycle. This model offers a unified perspective on LPL regulation, providing insights into TG metabolism, metabolic diseases, and therapeutics.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"490-504"},"PeriodicalIF":10.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140195109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cellotype-phenotype associations using 'organoid villages'.","authors":"Masaki Kimura, Takanori Takebe","doi":"10.1016/j.tem.2024.03.001","DOIUrl":"10.1016/j.tem.2024.03.001","url":null,"abstract":"<p><p>En masse phenotyping technology, using massively mosaic donor-derived cells and organoids, can offer enriched insights for cellotype-phenotype association in a cell-type-specific regulatory context. This emerging approach will help to discover biomarkers, inform genetic-epigenetic interactions and identify personalized therapeutic targets, offering hope for precision medicine against highly heterogeneous metabolic diseases.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"462-465"},"PeriodicalIF":11.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140864451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Digital twins and artificial intelligence in metabolic disease research.","authors":"Clara Mosquera-Lopez, Peter G Jacobs","doi":"10.1016/j.tem.2024.04.019","DOIUrl":"10.1016/j.tem.2024.04.019","url":null,"abstract":"<p><p>Digital twin technology is emerging as a transformative paradigm for personalized medicine in the management of chronic conditions. In this article, we explore the concept and key characteristics of a digital twin and its applications in chronic non-communicable metabolic disease management, with a focus on diabetes case studies. We cover various types of digital twin models, including mechanistic models based on ODEs, data-driven ML algorithms, and hybrid modeling strategies that combine the strengths of both approaches. We present successful case studies demonstrating the potential of digital twins in improving glucose outcomes for individuals with T1D and T2D, and discuss the benefits and challenges of translating digital twin research applications to clinical practice.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"549-557"},"PeriodicalIF":10.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140924000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Is MASLD lost in translation in mice?","authors":"Aysim Gunes, Jennifer L Estall","doi":"10.1016/j.tem.2024.03.005","DOIUrl":"10.1016/j.tem.2024.03.005","url":null,"abstract":"<p><p>Lack of preclinical model translation is often blamed for failed drug development. Here we discuss mouse models within the context of human steatotic liver disease (SLD). Variables such as aging and non-food hepatic stressors are often ignored but could explain challenges in reproducing the human disease in a laboratory.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"459-461"},"PeriodicalIF":10.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140861519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shiyu Zhao, Frank Qian, Zhenzhen Wan, Xue Chen, An Pan, Gang Liu
{"title":"Vitamin D and major chronic diseases.","authors":"Shiyu Zhao, Frank Qian, Zhenzhen Wan, Xue Chen, An Pan, Gang Liu","doi":"10.1016/j.tem.2024.04.018","DOIUrl":"https://doi.org/10.1016/j.tem.2024.04.018","url":null,"abstract":"<p><p>Numerous observational studies have demonstrated a significant inverse association between vitamin D status and the risk of major chronic disease, including type 2 diabetes (T2D), cardiovascular disease (CVD), and cancer. However, findings from Mendelian randomization (MR) studies and randomized controlled trials (RCTs) suggest minimal or no benefit of increased vitamin D levels. We provide an overview of recent literature linking vitamin D to major chronic diseases. Because emerging evidence indicates a potential threshold effect of vitamin D, future well-designed studies focused on diverse populations with vitamin D deficiency or insufficiency are warranted for a more comprehensive understanding of the effect of maintaining sufficient vitamin D status on the prevention of major chronic diseases.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":10.9,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141187024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tim Gruber, Franziska Lechner, Jean-Philippe Krieger, Cristina García-Cáceres
{"title":"Neuroendocrine gut-brain signaling in obesity.","authors":"Tim Gruber, Franziska Lechner, Jean-Philippe Krieger, Cristina García-Cáceres","doi":"10.1016/j.tem.2024.05.002","DOIUrl":"https://doi.org/10.1016/j.tem.2024.05.002","url":null,"abstract":"<p><p>The past decades have witnessed the rise and fall of several, largely unsuccessful, therapeutic attempts to bring the escalating obesity pandemic to a halt. Looking back to look ahead, the field has now put its highest hopes in translating insights from how the gastrointestinal (GI) tract communicates with the brain to calibrate behavior, physiology, and metabolism. A major focus of this review is to summarize the latest advances in comprehending the neuroendocrine aspects of this so-called 'gut-brain axis' and to explore novel concepts, cutting-edge technologies, and recent paradigm-shifting experiments. These exciting insights continue to refine our understanding of gut-brain crosstalk and are poised to promote the development of additional therapeutic avenues at the dawn of a new era of antiobesity therapeutics.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":10.9,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141184966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emma Barroso, Javier Jurado-Aguilar, Walter Wahli, Xavier Palomer, Manuel Vázquez-Carrera
{"title":"Increased hepatic gluconeogenesis and type 2 diabetes mellitus.","authors":"Emma Barroso, Javier Jurado-Aguilar, Walter Wahli, Xavier Palomer, Manuel Vázquez-Carrera","doi":"10.1016/j.tem.2024.05.006","DOIUrl":"https://doi.org/10.1016/j.tem.2024.05.006","url":null,"abstract":"<p><p>Abnormally increased hepatic gluconeogenesis is a significant contributor to hyperglycemia in the fasting state in patients with type 2 diabetes mellitus (T2DM) due to insulin resistance. Metformin, the most prescribed drug for the treatment of T2DM, is believed to exert its effect mainly by reducing hepatic gluconeogenesis. Here, we discuss how increased hepatic gluconeogenesis contributes to T2DM and we review newly revealed mechanisms underlying the attenuation of gluconeogenesis by metformin. In addition, we analyze the recent findings on new determinants involved in the regulation of gluconeogenesis, which might ultimately lead to the identification of novel and targeted treatment strategies for T2DM.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":10.9,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141181380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}