Trends in Endocrinology and Metabolism最新文献

筛选
英文 中文
Adipose tissue-gut microbiome crosstalk in inflammation and thermogenesis. 脂肪组织-肠道微生物组在炎症和产热过程中的相互影响
IF 12.6 1区 医学
Trends in Endocrinology and Metabolism Pub Date : 2025-08-01 Epub Date: 2024-11-07 DOI: 10.1016/j.tem.2024.10.004
Erin E Mauney, Marsha C Wibowo, Yu-Hua Tseng, Aleksandar D Kostic
{"title":"Adipose tissue-gut microbiome crosstalk in inflammation and thermogenesis.","authors":"Erin E Mauney, Marsha C Wibowo, Yu-Hua Tseng, Aleksandar D Kostic","doi":"10.1016/j.tem.2024.10.004","DOIUrl":"10.1016/j.tem.2024.10.004","url":null,"abstract":"<p><p>Previously characterized as inert fat depots, adipocytes are now recognized as dynamic mediators of inflammatory tone, metabolic health, and nutrient homeostasis. As endocrine organs, specialized depots of adipose tissue engage in crosstalk between the gut, liver, pancreas, and brain to coordinate appetite, thermogenesis, and ultimately body weight. These functions are tightly linked to the inflammatory status of adipose tissue, which is in turn influenced by the health of the gut microbiome. Here, we review recent findings linking specific gut microbes and their secreted factors, including recently identified elements such as bacterial extracellular vesicles, to the functional status of adipocytes. We conclude that further study may generate novel approaches for treating obesity and metabolic disease.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"721-732"},"PeriodicalIF":12.6,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142632285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inter-organ communication is a critical machinery to regulate metabolism and aging. 器官间通讯是调节新陈代谢和衰老的重要机制。
IF 12.6 1区 医学
Trends in Endocrinology and Metabolism Pub Date : 2025-08-01 Epub Date: 2024-12-17 DOI: 10.1016/j.tem.2024.11.013
Kyohei Tokizane, Shin-Ichiro Imai
{"title":"Inter-organ communication is a critical machinery to regulate metabolism and aging.","authors":"Kyohei Tokizane, Shin-Ichiro Imai","doi":"10.1016/j.tem.2024.11.013","DOIUrl":"10.1016/j.tem.2024.11.013","url":null,"abstract":"<p><p>Inter-organ communication (IOC) is a complex mechanism involved in maintaining metabolic homeostasis and healthy aging. Dysregulation of distinct forms of IOC is linked to metabolic derangements and age-related pathologies, implicating these processes as a potential target for therapeutic intervention to promote healthy aging. In this review, we delve into IOC mediated by hormonal signaling, circulating factors, organelle signaling, and neuronal networks and examine their roles in regulating metabolism and aging. Given the role of the hypothalamus as a high-order control center for aging and longevity, we particularly emphasize the importance of its communication with peripheral organs and pave the way for a better understanding of this critical machinery in metabolism and aging.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"756-766"},"PeriodicalIF":12.6,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12170921/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142856826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Host metabolic inflammation fueled by bacterial DNA. 宿主代谢炎症由细菌DNA引起。
IF 12.6 1区 医学
Trends in Endocrinology and Metabolism Pub Date : 2025-08-01 Epub Date: 2024-11-29 DOI: 10.1016/j.tem.2024.11.003
Ke Wang, Karina Cunha E Rocha, Houji Qin, Zixuan Zeng, Wei Ying
{"title":"Host metabolic inflammation fueled by bacterial DNA.","authors":"Ke Wang, Karina Cunha E Rocha, Houji Qin, Zixuan Zeng, Wei Ying","doi":"10.1016/j.tem.2024.11.003","DOIUrl":"10.1016/j.tem.2024.11.003","url":null,"abstract":"<p><p>Metabolic diseases, characterized by chronic low-grade inflammation, exhibit a compromised gut barrier allowing the translocation of bacteria-derived products to bloodstream and distant metabolic organs. Bacterial DNA can be detected in metabolic tissues during the onset of these diseases, highlighting its role in the development of metabolic diseases. Extracellular vesicles (EVs) are involved in the delivery of bacterial DNA to the local tissues, and its sensing by the host triggers local and system inflammation. Understanding bacterial DNA translocation and its induced inflammation is crucial in deciphering metabolic disease pathways. Here, we delve into the mechanisms dictating the interaction between host physiology and bacterial DNA, focusing on its origin and delivery, host immune responses against it, and its roles in metabolic disorders.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"767-777"},"PeriodicalIF":12.6,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142752264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intracellular endothelial cell metabolism in vascular function and dysfunction. 细胞内内皮细胞代谢与血管功能障碍。
IF 12.6 1区 医学
Trends in Endocrinology and Metabolism Pub Date : 2025-08-01 Epub Date: 2024-12-12 DOI: 10.1016/j.tem.2024.11.004
Kathryn M Citrin, Balkrishna Chaube, Carlos Fernández-Hernando, Yajaira Suárez
{"title":"Intracellular endothelial cell metabolism in vascular function and dysfunction.","authors":"Kathryn M Citrin, Balkrishna Chaube, Carlos Fernández-Hernando, Yajaira Suárez","doi":"10.1016/j.tem.2024.11.004","DOIUrl":"10.1016/j.tem.2024.11.004","url":null,"abstract":"<p><p>Endothelial cells (ECs) form the inner lining of blood vessels that is crucial for vascular function and homeostasis. They regulate vascular tone, oxidative stress, and permeability. Dysfunction leads to increased permeability, leukocyte adhesion, and thrombosis. ECs undergo metabolic changes in conditions such as wound healing, cancer, atherosclerosis, and diabetes, and can influence disease progression. We discuss recent research that has revealed diverse intracellular metabolic pathways in ECs that are tailored to their functional needs, including lipid handling, glycolysis, and fatty acid oxidation (FAO). Understanding EC metabolic signatures in health and disease will be crucial not only for basic biology but can also be exploited when designing new therapies to target EC-related functions in different vascular diseases.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"744-755"},"PeriodicalIF":12.6,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12159263/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142822859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rewiring of the glymphatic landscape in metabolic disorders. 代谢紊乱中淋巴系统景观的重新布线。
IF 12.6 1区 医学
Trends in Endocrinology and Metabolism Pub Date : 2025-08-01 Epub Date: 2024-12-04 DOI: 10.1016/j.tem.2024.11.005
Bandy Chen, David Meseguer, Stephanie Lenck, Jean-Leon Thomas, Marc Schneeberger
{"title":"Rewiring of the glymphatic landscape in metabolic disorders.","authors":"Bandy Chen, David Meseguer, Stephanie Lenck, Jean-Leon Thomas, Marc Schneeberger","doi":"10.1016/j.tem.2024.11.005","DOIUrl":"10.1016/j.tem.2024.11.005","url":null,"abstract":"<p><p>The incorporation of the glymphatic clearance system in the study of brain physiology aids in the advancement of innovative diagnostic and treatment strategies for neurological disorders. Exploring the glymphatic system across (from) neurological and (to) metabolic diseases may provide a better link between obesity and neurological disorders. Recent studies indicate the role of metabolic dysfunction as a risk factor for cognitive decline and neurological disorders through the disruption of the glymphatic system. Further investigation into how metabolic dysfunction disrupts glymphatic homeostasis and the domino effects on the neurovascular landscape, including neurovascular uncoupling, cerebral blood flow disruptions, blood-brain barrier leakage, and demyelination, can provide mechanistic insights into the link between obesity and neurological disorders.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"710-720"},"PeriodicalIF":12.6,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12134147/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142787765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fumarate. 延胡索酸酯。
IF 12.6 1区 医学
Trends in Endocrinology and Metabolism Pub Date : 2025-08-01 Epub Date: 2025-01-15 DOI: 10.1016/j.tem.2024.12.010
Désirée Schatton, Christian Frezza
{"title":"Fumarate.","authors":"Désirée Schatton, Christian Frezza","doi":"10.1016/j.tem.2024.12.010","DOIUrl":"10.1016/j.tem.2024.12.010","url":null,"abstract":"","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"778-779"},"PeriodicalIF":12.6,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143016599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microglial insulin resistance drives neurodegeneration. 小胶质细胞胰岛素抵抗驱动神经变性。
IF 12.6 1区 医学
Trends in Endocrinology and Metabolism Pub Date : 2025-08-01 Epub Date: 2025-07-02 DOI: 10.1016/j.tem.2025.06.006
Miao Sun, Weidong Mi
{"title":"Microglial insulin resistance drives neurodegeneration.","authors":"Miao Sun, Weidong Mi","doi":"10.1016/j.tem.2025.06.006","DOIUrl":"10.1016/j.tem.2025.06.006","url":null,"abstract":"<p><p>Brain insulin resistance (BIR) contributes to neurodegenerative diseases such as Alzheimer's disease (AD). Recently, Chen et al. revealed that microglial insulin signaling loss drives neuroinflammation and amyloid-β (Aβ) accumulation, promoting AD progression. These findings provide insights for the prevention and treatment of AD and cognitive disorders.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"696-698"},"PeriodicalIF":12.6,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144562015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting cardiometabolic risk in type 1 diabetes through incretin physiology. 通过肠促胰岛素生理学靶向1型糖尿病的心脏代谢风险。
IF 11.4 1区 医学
Trends in Endocrinology and Metabolism Pub Date : 2025-07-02 DOI: 10.1016/j.tem.2025.06.004
Ruth Frampton, Samantha Hocking, Jennifer R Snaith, Jerry R Greenfield
{"title":"Targeting cardiometabolic risk in type 1 diabetes through incretin physiology.","authors":"Ruth Frampton, Samantha Hocking, Jennifer R Snaith, Jerry R Greenfield","doi":"10.1016/j.tem.2025.06.004","DOIUrl":"https://doi.org/10.1016/j.tem.2025.06.004","url":null,"abstract":"<p><p>People living with type 1 diabetes have significantly increased cardiovascular risk compared with the general population. Traditional risk factors include hypertension, dyslipidaemia, and obesity. However, those with type 1 diabetes contend with treatment-induced insulin resistance and pancreatic and incretin hormone dysfunction, leading to dysglycaemia, which also impacts cardiovascular risk. Here, we highlight the underlying metabolic environment in type 1 diabetes with a focus on glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide 1 (GLP-1), and glucagon physiology. With the emergence of incretin-based therapies such as semaglutide (a GLP-1 receptor agonist) and tirzepatide (a combined GLP-1/GIP receptor agonist) targeting these receptor pathways, there is now potential to directly target metabolic deficits to address cardiometabolic risk in a type 1 diabetes population.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144562017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuronal glycolysis meets mitophagy to govern organismal wellbeing. 神经元糖酵解与线粒体自噬相结合,共同控制机体健康。
IF 11.4 1区 医学
Trends in Endocrinology and Metabolism Pub Date : 2025-07-02 DOI: 10.1016/j.tem.2025.05.005
Daniel Jimenez-Blasco, Rebeca Lapresa, Jesus Agulla, Angeles Almeida, Juan P Bolaños
{"title":"Neuronal glycolysis meets mitophagy to govern organismal wellbeing.","authors":"Daniel Jimenez-Blasco, Rebeca Lapresa, Jesus Agulla, Angeles Almeida, Juan P Bolaños","doi":"10.1016/j.tem.2025.05.005","DOIUrl":"https://doi.org/10.1016/j.tem.2025.05.005","url":null,"abstract":"<p><p>Neurons are exceptionally energy-demanding cells but have limited energy storage, relying on a constant supply of fuel and oxygen. Although glucose is the brain's main energy source, neurons reduce glycolysis under normal conditions. This surprising strategy helps to protect mitochondria by preserving nicotinamide-adenine dinucleotide (NAD<sup>+</sup>), a vital cofactor consumed by glycolysis. NAD<sup>+</sup> is needed for sirtuin-driven mitophagy, a process that removes damaged mitochondria. By saving NAD<sup>+</sup>, neurons can maintain healthy, energy-efficient mitochondria. These mitochondria then use alternative fuels such as lactate and ketone bodies from astrocytes. Here, we discuss the way in which this balance between reduced glycolysis and active mitophagy supports brain function and overall metabolic health, highlighting a sophisticated system that prioritizes mitochondrial quality for long-term cognitive performance and systemic homeostasis.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144562016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondria as sensors of intracellular pathogens. 线粒体是细胞内病原体的传感器。
IF 11.4 1区 医学
Trends in Endocrinology and Metabolism Pub Date : 2025-07-01 Epub Date: 2024-11-22 DOI: 10.1016/j.tem.2024.10.009
Jose M Delgado, Lena Pernas
{"title":"Mitochondria as sensors of intracellular pathogens.","authors":"Jose M Delgado, Lena Pernas","doi":"10.1016/j.tem.2024.10.009","DOIUrl":"10.1016/j.tem.2024.10.009","url":null,"abstract":"<p><p>Mitochondria must sense their environment to enable cells and organisms to adapt to diverse environments and survive during stress. However, during microbial infection, an evolutionary pressure since the inception of the eukaryotic cell, these organelles are traditionally viewed as targets for microbes. In this opinion we consider the perspective that mitochondria are domesticated microbes that sense and guard their 'host' cell against pathogens. We explore potential mechanisms by which mitochondria detect intracellular pathogens and induce mitochondria-autonomous responses that activate cellular defenses.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"638-644"},"PeriodicalIF":11.4,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142696205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信