Ke Wang, Karina Cunha E Rocha, Houji Qin, Zixuan Zeng, Wei Ying
{"title":"宿主代谢炎症由细菌DNA引起。","authors":"Ke Wang, Karina Cunha E Rocha, Houji Qin, Zixuan Zeng, Wei Ying","doi":"10.1016/j.tem.2024.11.003","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolic diseases, characterized by chronic low-grade inflammation, exhibit a compromised gut barrier allowing the translocation of bacteria-derived products to bloodstream and distant metabolic organs. Bacterial DNA can be detected in metabolic tissues during the onset of these diseases, highlighting its role in the development of metabolic diseases. Extracellular vesicles (EVs) are involved in the delivery of bacterial DNA to the local tissues, and its sensing by the host triggers local and system inflammation. Understanding bacterial DNA translocation and its induced inflammation is crucial in deciphering metabolic disease pathways. Here, we delve into the mechanisms dictating the interaction between host physiology and bacterial DNA, focusing on its origin and delivery, host immune responses against it, and its roles in metabolic disorders.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Host metabolic inflammation fueled by bacterial DNA.\",\"authors\":\"Ke Wang, Karina Cunha E Rocha, Houji Qin, Zixuan Zeng, Wei Ying\",\"doi\":\"10.1016/j.tem.2024.11.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metabolic diseases, characterized by chronic low-grade inflammation, exhibit a compromised gut barrier allowing the translocation of bacteria-derived products to bloodstream and distant metabolic organs. Bacterial DNA can be detected in metabolic tissues during the onset of these diseases, highlighting its role in the development of metabolic diseases. Extracellular vesicles (EVs) are involved in the delivery of bacterial DNA to the local tissues, and its sensing by the host triggers local and system inflammation. Understanding bacterial DNA translocation and its induced inflammation is crucial in deciphering metabolic disease pathways. Here, we delve into the mechanisms dictating the interaction between host physiology and bacterial DNA, focusing on its origin and delivery, host immune responses against it, and its roles in metabolic disorders.</p>\",\"PeriodicalId\":54415,\"journal\":{\"name\":\"Trends in Endocrinology and Metabolism\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Endocrinology and Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tem.2024.11.003\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Endocrinology and Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tem.2024.11.003","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Host metabolic inflammation fueled by bacterial DNA.
Metabolic diseases, characterized by chronic low-grade inflammation, exhibit a compromised gut barrier allowing the translocation of bacteria-derived products to bloodstream and distant metabolic organs. Bacterial DNA can be detected in metabolic tissues during the onset of these diseases, highlighting its role in the development of metabolic diseases. Extracellular vesicles (EVs) are involved in the delivery of bacterial DNA to the local tissues, and its sensing by the host triggers local and system inflammation. Understanding bacterial DNA translocation and its induced inflammation is crucial in deciphering metabolic disease pathways. Here, we delve into the mechanisms dictating the interaction between host physiology and bacterial DNA, focusing on its origin and delivery, host immune responses against it, and its roles in metabolic disorders.
期刊介绍:
Trends in Endocrinology and Metabolism (TEM) stands as a premier Reviews journal in the realms of metabolism and endocrinology. Our commitment is reflected in the publication of refined, concise, and highly impactful articles that delve into cutting-edge topics, encompassing basic, translational, and clinical aspects. From state-of-the-art treatments for endocrine diseases to groundbreaking developments in molecular biology, TEM provides comprehensive coverage.
Explore recent advancements in diabetes, endocrine diseases, obesity, neuroendocrinology, immunometabolism, molecular and cellular biology, and a myriad of other areas through our journal.
TEM serves as an invaluable resource for researchers, clinicians, lecturers, teachers, and students. Each monthly issue is anchored by Reviews and Opinion articles, with Reviews meticulously chronicling recent and significant developments, often contributed by leading researchers in specific fields. Opinion articles foster debate and hypotheses. Our shorter pieces include Science & Society, shedding light on issues at the intersection of science, society, and policy; Spotlights, which focus on exciting recent developments in the literature, and single-point hypotheses as Forum articles. We wholeheartedly welcome and encourage responses to previously published TEM content in the form of Letters.