Alessandro Giollo, Mariangela Salvato, Andrea Doria
{"title":"Recognizing the role of fibromyalgia in post-exertional malaise.","authors":"Alessandro Giollo, Mariangela Salvato, Andrea Doria","doi":"10.1016/j.tem.2025.02.005","DOIUrl":"10.1016/j.tem.2025.02.005","url":null,"abstract":"","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"605-606"},"PeriodicalIF":11.4,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143617790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stefano Auddino, Elena Aiello, Giuseppina Emanuela Grieco, Francesco Dotta, Guido Sebastiani
{"title":"A three-layer perspective on miRNA regulation in β cell inflammation.","authors":"Stefano Auddino, Elena Aiello, Giuseppina Emanuela Grieco, Francesco Dotta, Guido Sebastiani","doi":"10.1016/j.tem.2024.10.002","DOIUrl":"10.1016/j.tem.2024.10.002","url":null,"abstract":"<p><p>MicroRNAs (miRNAs) are noncoding RNA molecules that regulate gene expression post-transcriptionally and influence numerous biological processes. Aberrant miRNA expression is linked to diseases such as diabetes mellitus; indeed, miRNAs regulate pancreatic islet inflammation in both type 1 (T1D) and type 2 diabetes (T2D). Traditionally, miRNA research has focused on canonical sequences and offers a two-layer view - from expression to function. However, advances in RNA sequencing have revealed miRNA variants, called isomiRs, that arise from alternative processing or modifications of canonical sequences. This introduces a three-layer view - from expression, through sequence modifications, to function. We discuss the potential link between cellular stresses and isomiR biogenesis, and how this association could improve our knowledge of islet inflammation and dysfunction.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"623-637"},"PeriodicalIF":11.4,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142632068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jingjuan Chen, James F Markworth, Christina Ferreira, Chi Zhang, Shihuan Kuang
{"title":"Lipid droplets as cell fate determinants in skeletal muscle.","authors":"Jingjuan Chen, James F Markworth, Christina Ferreira, Chi Zhang, Shihuan Kuang","doi":"10.1016/j.tem.2024.10.006","DOIUrl":"10.1016/j.tem.2024.10.006","url":null,"abstract":"<p><p>Lipid droplets (LDs) are dynamic organelles that communicate with other cellular components to orchestrate energetic homeostasis and signal transduction. In skeletal muscle, the presence and importance of LDs have been widely studied in myofibers of both rodents and humans under physiological conditions and in metabolic disorders. However, the role of LDs in myogenic stem cells has only recently begun to be unveiled. In this review we briefly summarize the process of LD biogenesis and degradation in the most prevalent model. We then review recent knowledge on LDs in skeletal muscle and muscle stem cells. We further introduce advanced methodologies for LD imaging and mass spectrometry that have propelled our understanding of the dynamics and heterogeneity of LDs.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"645-659"},"PeriodicalIF":11.4,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12116854/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142755918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Widening research horizons on metabolic dysfunction-associated steatotic liver disease and cancer.","authors":"Amedeo Lonardo, Norbert Stefan, Alessandro Mantovani","doi":"10.1016/j.tem.2024.12.009","DOIUrl":"10.1016/j.tem.2024.12.009","url":null,"abstract":"<p><p>Liver fibrosis and biological sex variably modulate the risks of hepatocellular carcinoma (HCC) and extrahepatic cancers (EHCs) arising in the context of metabolic dysfunction-associated steatotic liver disease (MASLD). Here, we highlight how these variables may have implications in the setting of chemoprevention and precision medicine approaches in MASLD and guide additional research.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"610-613"},"PeriodicalIF":11.4,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Braeden T Charlton, Richie P Goulding, Richard T Jaspers, Brent Appelman, Michèle van Vugt, Rob C I Wüst
{"title":"Skeletal muscle adaptations and post-exertional malaise in long COVID.","authors":"Braeden T Charlton, Richie P Goulding, Richard T Jaspers, Brent Appelman, Michèle van Vugt, Rob C I Wüst","doi":"10.1016/j.tem.2024.11.008","DOIUrl":"10.1016/j.tem.2024.11.008","url":null,"abstract":"<p><p>When acute SARS-CoV-2 infections cause symptoms that persist longer than 3 months, this condition is termed long COVID. Symptoms experienced by patients often include myalgia, fatigue, brain fog, cognitive impairments, and post-exertional malaise (PEM), which is the worsening of symptoms following mental or physical exertion. There is little consensus on the pathophysiology of exercise-induced PEM and skeletal-muscle-related symptoms. In this opinion article we highlight intrinsic mitochondrial dysfunction, endothelial abnormalities, and a muscle fiber type shift towards a more glycolytic phenotype as main contributors to the reduced exercise capacity in long COVID. The mechanistic trigger for physical exercise to induce PEM is unknown, but rapid skeletal muscle tissue damage and intramuscular infiltration of immune cells contribute to PEM-related symptoms.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":"614-622"},"PeriodicalIF":11.4,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142856828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jin Ma, Annie Yujin Son, Youlim Son, Ping-Yuan Wang, Paul M Hwang
{"title":"Mitochondrial innate immune signaling in skeletal muscle adaptation to exercise.","authors":"Jin Ma, Annie Yujin Son, Youlim Son, Ping-Yuan Wang, Paul M Hwang","doi":"10.1016/j.tem.2025.05.004","DOIUrl":"10.1016/j.tem.2025.05.004","url":null,"abstract":"<p><p>Exercise-induced inflammation is regarded as a response to muscle damage from mechanical stress, but controlled immune signaling can be beneficial by promoting metabolic adaptation which, for example, decreases obesity and lowers the risk of diabetes. In addition to oxidative metabolism, mitochondria play a central role in initiating innate immune signaling. We review recent work that has identified the cGAS-STING-NF-κB signaling pathway, activated by the downregulation of mitochondrial proteins CHCHD4 and TRIAP1, as mediating skeletal muscle adaptation to exercise training as well as potentially promoting cellular resilience to environmental stresses. Notably, CHCHD4 haploinsufficiency prevents obesity in aging mice; therefore, this innate immune signaling pathway could be targeted to achieve some of the health benefits of exercise.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":12.6,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12353998/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144295311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Uridine.","authors":"Julia Ugras, Costas A Lyssiotis","doi":"10.1016/j.tem.2025.05.006","DOIUrl":"10.1016/j.tem.2025.05.006","url":null,"abstract":"","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":12.6,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12308723/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144287051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The trade-off between reproduction and resilience.","authors":"Liankui Zhou, Ying Liu","doi":"10.1016/j.tem.2025.05.003","DOIUrl":"https://doi.org/10.1016/j.tem.2025.05.003","url":null,"abstract":"<p><p>The mitochondrial unfolded protein response (UPR<sup>mt</sup>) is a transcriptional program that alleviates mitochondrial dysfunction by facilitating the recovery of the mitochondrial network. In Caenorhabditis elegans, reproductive maturity leads to suppression of the UPR<sup>mt</sup>, suggesting a trade-off between maintenance of stress resilience and fertility. Here, we examine emerging evidence suggesting that the reproduction-associated suppression of UPR<sup>mt</sup> is a representative example of the physiological costs of reproduction. We focus on the germline-to-soma intertissue signaling mechanisms recently identified in C. elegans, which modulate systemic physiological responses during reproduction. These findings not only illuminate the trade-offs between stress resistance and reproductive capacity but also underscore the broader implications of intertissue communication in coordinating resource allocation.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":11.4,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144276721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Almudena Veiga-Lopez, Elana R Elkin, Sean M Harris, Bevin E Blake, Alison G Paquette, Lauren M Aleksunes, Phoebe A Stapleton
{"title":"Current approaches and advances in placental toxicology.","authors":"Almudena Veiga-Lopez, Elana R Elkin, Sean M Harris, Bevin E Blake, Alison G Paquette, Lauren M Aleksunes, Phoebe A Stapleton","doi":"10.1016/j.tem.2025.05.001","DOIUrl":"10.1016/j.tem.2025.05.001","url":null,"abstract":"<p><p>Despite the crucial role of the placenta in supporting pregnancy and fetal development, research into its susceptibility to environmental exposures has been limited by methodological challenges. We review diverse approaches to studying placental biology and responses to chemical exposures, and provide a comprehensive assessment of traditional and emerging methodologies. Beginning with an overview of placental biology and species differences, we evaluate in vivo and in vitro models, and discuss their strengths and limitations. We examine advances, including placental transfer models, toxicokinetic frameworks, and 3D microphysiological systems, for their potential to address current gaps. Last, we consider molecular epidemiology and high-throughput analyses as complementary strategies. Together, these tools support better experimental design and enhance our understanding of placental vulnerability to chemical exposures.</p>","PeriodicalId":54415,"journal":{"name":"Trends in Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":12.6,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12353762/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144235964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}