Trends in Genetics最新文献

筛选
英文 中文
Circadian clock gene polymorphisms implicated in human pathologies. 与人类病症有关的昼夜节律钟基因多态性。
IF 13.6 2区 生物学
Trends in Genetics Pub Date : 2024-10-01 Epub Date: 2024-06-12 DOI: 10.1016/j.tig.2024.05.006
Jesse R Janoski, Ignacio Aiello, Clayton W Lundberg, Carla V Finkielstein
{"title":"Circadian clock gene polymorphisms implicated in human pathologies.","authors":"Jesse R Janoski, Ignacio Aiello, Clayton W Lundberg, Carla V Finkielstein","doi":"10.1016/j.tig.2024.05.006","DOIUrl":"10.1016/j.tig.2024.05.006","url":null,"abstract":"<p><p>Circadian rhythms, ~24 h cycles of physiological and behavioral processes, can be synchronized by external signals (e.g., light) and persist even in their absence. Consequently, dysregulation of circadian rhythms adversely affects the well-being of the organism. This timekeeping system is generated and sustained by a genetically encoded endogenous mechanism composed of interlocking transcriptional/translational feedback loops that generate rhythmic expression of core clock genes. Genome-wide association studies (GWAS) and forward genetic studies show that SNPs in clock genes influence gene regulation and correlate with the risk of developing various conditions. We discuss genetic variations in core clock genes that are associated with various phenotypes, their implications for human health, and stress the need for thorough studies in this domain of circadian regulation.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":" ","pages":"834-852"},"PeriodicalIF":13.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141319024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the evolutionary developmental biology of the cell. 细胞进化发育生物学。
IF 13.6 2区 生物学
Trends in Genetics Pub Date : 2024-10-01 Epub Date: 2024-07-05 DOI: 10.1016/j.tig.2024.06.003
Leslie S Babonis
{"title":"On the evolutionary developmental biology of the cell.","authors":"Leslie S Babonis","doi":"10.1016/j.tig.2024.06.003","DOIUrl":"10.1016/j.tig.2024.06.003","url":null,"abstract":"<p><p>Organisms are complex assemblages of cells, cells that produce light, shoot harpoons, and secrete glue. Therefore, identifying the mechanisms that generate novelty at the level of the individual cell is essential for understanding how multicellular life evolves. For decades, the field of evolutionary developmental biology (Evo-Devo) has been developing a framework for connecting genetic variation that arises during embryonic development to the emergence of diverse adult forms. With increasing access to new single cell 'omics technologies and an array of techniques for manipulating gene expression, we can now extend these inquiries inward to the level of the individual cell. In this opinion, I argue that applying an Evo-Devo framework to single cells makes it possible to explore the natural history of cells, where this was once only possible at the organismal level.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":" ","pages":"822-833"},"PeriodicalIF":13.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11619940/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141545553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Why do mobile genetic elements transfer DNA of their hosts? 为什么流动遗传因子会转移宿主的 DNA?
IF 11.4 2区 生物学
Trends in Genetics Pub Date : 2024-09-19 DOI: 10.1016/j.tig.2024.07.008
Michiel Vos, Angus Buckling, Bram Kuijper, Adam Eyre-Walker, Cyril Bontemps, Pierre Leblond, Tatiana Dimitriu
{"title":"Why do mobile genetic elements transfer DNA of their hosts?","authors":"Michiel Vos, Angus Buckling, Bram Kuijper, Adam Eyre-Walker, Cyril Bontemps, Pierre Leblond, Tatiana Dimitriu","doi":"10.1016/j.tig.2024.07.008","DOIUrl":"https://doi.org/10.1016/j.tig.2024.07.008","url":null,"abstract":"<p>The prokaryote world is replete with mobile genetic elements (MGEs) – self-replicating entities that can move within and between their hosts. Many MGEs not only transfer their own DNA to new hosts but also transfer host DNA located elsewhere on the chromosome in the process. This could potentially lead to indirect benefits to the host when the resulting increase in chromosomal variation results in more efficient natural selection. We review the diverse ways in which MGEs promote the transfer of host DNA and explore the benefits and costs to MGEs and hosts. In many cases, MGE-mediated transfer of host DNA might not be selected for because of a sex function, but evidence of MGE domestication suggests that there may be host benefits of MGE-mediated sex.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":"6 1","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Starships: a new frontier for fungal biology 星际飞船:真菌生物学的新领域
IF 11.4 2区 生物学
Trends in Genetics Pub Date : 2024-09-18 DOI: 10.1016/j.tig.2024.08.006
Andrew Urquhart, Aaron A. Vogan, Emile Gluck-Thaler
{"title":"Starships: a new frontier for fungal biology","authors":"Andrew Urquhart, Aaron A. Vogan, Emile Gluck-Thaler","doi":"10.1016/j.tig.2024.08.006","DOIUrl":"https://doi.org/10.1016/j.tig.2024.08.006","url":null,"abstract":"<p>Transposable elements (TEs) are semiautonomous genetic entities that proliferate in genomes. We recently discovered the <em>Starships</em>, a previously hidden superfamily of giant TEs found in a diverse subphylum of filamentous fungi, the <em>Pezizomycotina</em>. <em>Starships</em> are unlike other eukaryotic TEs because they have evolved mechanisms for both mobilizing entire genes, including those encoding conditionally beneficial phenotypes, and for horizontally transferring between individuals. We argue that <em>Starships</em> have unrivaled capacity to engage their fungal hosts as genetic parasites and mutualists, revealing unexplored terrain for investigating the ecoevolutionary dynamics of TE-eukaryote interactions. We build on existing models of fungal genome evolution by conceptualizing <em>Starships</em> as a distinct genomic compartment whose dynamics profoundly shape fungal biology.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":"26 1","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On correlative and causal links of replicative epimutations 关于复制外显子的相关性和因果联系
IF 11.4 2区 生物学
Trends in Genetics Pub Date : 2024-09-16 DOI: 10.1016/j.tig.2024.08.008
Wanding Zhou, Yitzhak Reizel
{"title":"On correlative and causal links of replicative epimutations","authors":"Wanding Zhou, Yitzhak Reizel","doi":"10.1016/j.tig.2024.08.008","DOIUrl":"https://doi.org/10.1016/j.tig.2024.08.008","url":null,"abstract":"<p>The mitotic inheritability of DNA methylation as an epigenetic marker in higher-order eukaryotes has been established for &gt;40 years. The DNA methylome and mitotic division interplay is now considered bidirectional and highly intertwined. Various epigenetic writers, erasers, and modulators shape the perceived replicative methylation dynamics. This Review surveys the principles and complexity of mitotic transmission of DNA methylation, emphasizing the awareness of mitotic aging in analyzing DNA methylation dynamics in development and disease. We reviewed how DNA methylation changes alter mitotic proliferation capacity, implicating age-related diseases like cancer. We link replicative epimutation to stem cell dysfunction, inflammatory response, cancer risks, and epigenetic clocks, discussing the causative role of DNA methylation in health and disease.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":"4 1","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142269324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolving a favorable distribution for mutation effects 逐渐形成有利于突变效应的分布
IF 11.4 2区 生物学
Trends in Genetics Pub Date : 2024-09-14 DOI: 10.1016/j.tig.2024.07.009
David G. King
{"title":"Evolving a favorable distribution for mutation effects","authors":"David G. King","doi":"10.1016/j.tig.2024.07.009","DOIUrl":"https://doi.org/10.1016/j.tig.2024.07.009","url":null,"abstract":"<p>Tandem-repeat DNA sequences appear to be singularly capable of yielding abundant repeat-number mutations with a potentially advantageous distribution of fitness effects. Although knowing the rates and relative proportions of deleterious, neutral and beneficial mutations is fundamental for understanding evolvability, analysis of adaptation routinely overlooks small-effect mutations arising in tandem repeats.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":"22 1","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142269242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic adaptations of marine invertebrates to hydrothermal vent habitats 海洋无脊椎动物对热液喷口生境的遗传适应性
IF 11.4 2区 生物学
Trends in Genetics Pub Date : 2024-09-13 DOI: 10.1016/j.tig.2024.08.004
Haibin Zhang, Yang Zhou, Zhuo Yang
{"title":"Genetic adaptations of marine invertebrates to hydrothermal vent habitats","authors":"Haibin Zhang, Yang Zhou, Zhuo Yang","doi":"10.1016/j.tig.2024.08.004","DOIUrl":"https://doi.org/10.1016/j.tig.2024.08.004","url":null,"abstract":"<p>Hydrothermal vents are unique habitats like an oases of life compared with typical deep-sea, soft-sediment environments. Most animals that live in these habitats are invertebrates, and they have adapted to extreme vent environments that include high temperatures, hypoxia, high sulfide, high metal concentration, and darkness. The advent of next-generation sequencing technology, especially the coming of the new era of omics, allowed more studies to focus on the molecular adaptation of these invertebrates to vent habitats. Many genes linked to hydrothermal adaptation have been studied. We summarize the findings related to these genetic adaptations and discuss which new techniques can facilitate studies in the future.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":"27 1","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hypertranscription: the invisible hand in stem cell biology 超转录:干细胞生物学中的无形之手
IF 11.4 2区 生物学
Trends in Genetics Pub Date : 2024-09-12 DOI: 10.1016/j.tig.2024.08.005
Yun-Kyo Kim, Evelyne Collignon, S. Bryn Martin, Miguel Ramalho-Santos
{"title":"Hypertranscription: the invisible hand in stem cell biology","authors":"Yun-Kyo Kim, Evelyne Collignon, S. Bryn Martin, Miguel Ramalho-Santos","doi":"10.1016/j.tig.2024.08.005","DOIUrl":"https://doi.org/10.1016/j.tig.2024.08.005","url":null,"abstract":"<p>Stem cells are the fundamental drivers of growth during development and adult organ homeostasis. The properties that define stem cells – self-renewal and differentiation – are highly biosynthetically demanding. In order to fuel this demand, stem and progenitor cells engage in hypertranscription, a global amplification of the transcriptome. While standard normalization methods in transcriptomics typically mask hypertranscription, new approaches are beginning to reveal a remarkable range in global transcriptional output in stem and progenitor cells. We discuss technological advancements to probe global transcriptional shifts, review recent findings that contribute to defining hallmarks of stem cell hypertranscription, and propose future directions in this field.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":"219 1","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142198811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clonal ants reveal a potentially hidden meiotic feature 克隆蚂蚁揭示了一种潜在的隐性减数分裂特征
IF 11.4 2区 生物学
Trends in Genetics Pub Date : 2024-09-12 DOI: 10.1016/j.tig.2024.08.011
Hugo Darras, Qiaowei Pan
{"title":"Clonal ants reveal a potentially hidden meiotic feature","authors":"Hugo Darras, Qiaowei Pan","doi":"10.1016/j.tig.2024.08.011","DOIUrl":"https://doi.org/10.1016/j.tig.2024.08.011","url":null,"abstract":"<p>Meiosis is essential for eukaryotic reproduction and provides the basis for Mendel's segregation laws. A recent study by <span><span>Lacy <em>et al.</em></span><svg aria-label=\"Opens in new window\" focusable=\"false\" height=\"20\" viewbox=\"0 0 8 8\"><path d=\"M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z\"></path></svg></span> identified a significant deviation from these laws in a clonal ant, hinting at a potentially overlooked meiotic feature. This discovery may have broader implications for recombination in nonclonal eukaryotes.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":"14 1","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142198810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Achieve your research goals: a project management toolkit for graduate studies 实现研究目标:研究生项目管理工具包
IF 11.4 2区 生物学
Trends in Genetics Pub Date : 2024-09-12 DOI: 10.1016/j.tig.2024.08.003
Sheetal Modi
{"title":"Achieve your research goals: a project management toolkit for graduate studies","authors":"Sheetal Modi","doi":"10.1016/j.tig.2024.08.003","DOIUrl":"https://doi.org/10.1016/j.tig.2024.08.003","url":null,"abstract":"<p>How we work affects what we achieve. In this piece, we provide a project management toolkit for students to apply to their research, offering a structure to set goals, manage risks, prioritize work, and make effective decisions. With good planning, students can improve outcomes and make their journey more rewarding.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":"1 1","pages":""},"PeriodicalIF":11.4,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142198813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信