Trends in Immunology最新文献

筛选
英文 中文
CCR8: a promising therapeutic target against tumor-infiltrating regulatory T cells. CCR8:抗肿瘤浸润性调节性T细胞的治疗靶点
IF 13.1 1区 医学
Trends in Immunology Pub Date : 2025-02-01 Epub Date: 2025-01-30 DOI: 10.1016/j.it.2025.01.001
Yuanjia Wen, Yu Xia, Xiangping Yang, Huayi Li, Qinglei Gao
{"title":"CCR8: a promising therapeutic target against tumor-infiltrating regulatory T cells.","authors":"Yuanjia Wen, Yu Xia, Xiangping Yang, Huayi Li, Qinglei Gao","doi":"10.1016/j.it.2025.01.001","DOIUrl":"10.1016/j.it.2025.01.001","url":null,"abstract":"<p><p>Tumor-infiltrating regulatory T (TI-Treg) cells constitute key components within the tumor microenvironment (TME) to suppress antitumor immunity and facilitate tumor progression. Although multiple therapies have been developed to eliminate TI-Treg cells, most of them exhibit only modest efficacy and harbor risks of inducing immune-related adverse events (irAEs). Recent studies demonstrate that CC chemokine receptor (CCR)8 is highly and specifically expressed on effector TI-Treg cells in mice and humans, highlighting CCR8 as a promising target for selective TI-Treg cell depletion in the treatment of various cancers. Here, we concentrate on the latest understanding of CCR8 regarding its expression, functions, and regulation, and summarize the current landscape of CCR8-targeted therapies. With favorable efficacy and safety, the latter represent an important class of next-generation putative cancer immunotherapies.</p>","PeriodicalId":54412,"journal":{"name":"Trends in Immunology","volume":" ","pages":"153-165"},"PeriodicalIF":13.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143076319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decidual stromal cells: fibroblasts specialized in immunoregulation during pregnancy. 蜕膜间质细胞:妊娠期间专门参与免疫调节的成纤维细胞。
IF 13.1 1区 医学
Trends in Immunology Pub Date : 2025-02-01 Epub Date: 2025-02-13 DOI: 10.1016/j.it.2024.12.007
Tatiana Llorca, María José Ruiz-Magaña, Ana C Abadía, Carmen Ruiz-Ruiz, Enrique G Olivares
{"title":"Decidual stromal cells: fibroblasts specialized in immunoregulation during pregnancy.","authors":"Tatiana Llorca, María José Ruiz-Magaña, Ana C Abadía, Carmen Ruiz-Ruiz, Enrique G Olivares","doi":"10.1016/j.it.2024.12.007","DOIUrl":"10.1016/j.it.2024.12.007","url":null,"abstract":"<p><p>Decidual stromal cells (DSCs) are involved in immunoregulatory mechanisms that prevent fetal rejection by the mammalian maternal immune system. Recent studies using single-cell RNA sequencing demonstrated the existence of different types of human and mouse DSCs, highlighting corresponding differentiation (decidualization) pathways, and suggesting their involvement in the immune response during normal and pathological pregnancy. DSCs may be considered tissue-specialized fibroblasts because both DSCs and fibroblasts share phenotypic and functional similarities in immunologically challenged tissues, especially in terms of their immune functions. Indeed, fibroblasts can setup, support, and suppress immune responses and these functions are also performed by DSCs. Moreover, fibroblasts and DSCs can induce ectopic foci as tertiary lymphoid structures (TLSs), and endometriosis, respectively. Thus, understanding DSC immunoregulatory functions is of timely relevance.</p>","PeriodicalId":54412,"journal":{"name":"Trends in Immunology","volume":" ","pages":"138-152"},"PeriodicalIF":13.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143416337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leveraging community engagement to shape biomedical research priorities. 利用社区参与来确定生物医学研究的优先事项。
IF 13.1 1区 医学
Trends in Immunology Pub Date : 2025-02-01 Epub Date: 2025-01-21 DOI: 10.1016/j.it.2024.12.004
Sara Suliman, Lillian Agyei, Shaista A Afzal, Shanell Williams
{"title":"Leveraging community engagement to shape biomedical research priorities.","authors":"Sara Suliman, Lillian Agyei, Shaista A Afzal, Shanell Williams","doi":"10.1016/j.it.2024.12.004","DOIUrl":"10.1016/j.it.2024.12.004","url":null,"abstract":"<p><p>Community engagement is essential for shaping equitable biomedical research priorities, but it is often underutilized, especially for marginalized populations. To integrate community feedback from the public into research, herein we describe a collaborative pilot funded by the Chan Zuckerberg Initiative which pairs the University of California San Francisco (UCSF) with the Rafiki Coalition for Health and Wellness. Utilizing focus groups modeled on Research Prioritization by Affected Communities, participants identified themes that included mistrust in healthcare, representation gaps, and the need for culturally responsive research. Priorities such as mental health, chronic disease, and access to black providers were highlighted. The findings emphasize the need for sustained, grassroots partnerships to drive inclusive research agendas.</p>","PeriodicalId":54412,"journal":{"name":"Trends in Immunology","volume":" ","pages":"100-103"},"PeriodicalIF":13.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143025748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ligand-restricted synNotch switches enable precision cell therapy. 配体受限的synNotch开关可以实现精确的细胞治疗。
IF 13.1 1区 医学
Trends in Immunology Pub Date : 2025-02-01 Epub Date: 2025-01-28 DOI: 10.1016/j.it.2025.01.005
Xuyang Li, Dan Hu
{"title":"Ligand-restricted synNotch switches enable precision cell therapy.","authors":"Xuyang Li, Dan Hu","doi":"10.1016/j.it.2025.01.005","DOIUrl":"10.1016/j.it.2025.01.005","url":null,"abstract":"<p><p>Lim and colleagues demonstrate that synNotch transcriptional circuits engineered into T cells can be used to precisely control location-specific expression of payloads responding to antigen triggers, thus locally inhibiting unwanted immunity or neuroinflammation. With no off-tumor toxicity or systemic immunosuppression upon elimination of mouse brain tumors, this approach can achieve better efficacy than anticipated.</p>","PeriodicalId":54412,"journal":{"name":"Trends in Immunology","volume":" ","pages":"91-93"},"PeriodicalIF":13.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835521/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143061471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The 'inflammazone' in chronic inflammatory diseases: psoriasis and sarcoidosis. 慢性炎性疾病中的“炎性因子”:牛皮癣和结节病。
IF 13.1 1区 医学
Trends in Immunology Pub Date : 2025-02-01 Epub Date: 2025-01-27 DOI: 10.1016/j.it.2025.01.002
Phei Er Saw, Erwei Song
{"title":"The 'inflammazone' in chronic inflammatory diseases: psoriasis and sarcoidosis.","authors":"Phei Er Saw, Erwei Song","doi":"10.1016/j.it.2025.01.002","DOIUrl":"10.1016/j.it.2025.01.002","url":null,"abstract":"<p><p>Chronic inflammatory diseases show significant heterogeneity in their phenotypes, with diverse immune cells and mediators interacting in response to various stimuli. This review proposes the concept of the 'inflammazone' framework - which maps the distribution of immune components driving disease pathogenesis - using sarcoidosis and psoriasis as examples. Sarcoidosis features granulomatous inflammation with macrophages and CD4<sup>+</sup> T cells, which can spread to lymph nodes and other organs. Psoriasis, affecting primarily the skin, involves Th1, Th17, and Th22 pathways with CD8<sup>+</sup> T cells and dendritic cells. Human sarcoidosis exhibits geographic and racial variability, while psoriasis shows varying morphologies and disease courses. Sarcoidosis has more extensive distal immune signaling, whereas psoriasis remains more localized. Understanding the inflammazone is crucial for advancing personalized treatments for inflammatory diseases.</p>","PeriodicalId":54412,"journal":{"name":"Trends in Immunology","volume":" ","pages":"121-137"},"PeriodicalIF":13.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143061521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immune evasion in ovarian cancer: implications for immunotherapy and emerging treatments. 卵巢癌的免疫逃避:对免疫疗法和新兴疗法的影响。
IF 13.1 1区 医学
Trends in Immunology Pub Date : 2025-02-01 Epub Date: 2025-01-23 DOI: 10.1016/j.it.2024.12.006
Romi Gupta, Raj Kumar, Courtney A Penn, Narendra Wajapeyee
{"title":"Immune evasion in ovarian cancer: implications for immunotherapy and emerging treatments.","authors":"Romi Gupta, Raj Kumar, Courtney A Penn, Narendra Wajapeyee","doi":"10.1016/j.it.2024.12.006","DOIUrl":"10.1016/j.it.2024.12.006","url":null,"abstract":"<p><p>Ovarian cancer (OC) is the most lethal gynecologic malignancy, characterized by multiple histological subtypes, each with distinct pathological and clinical features. Current treatment approaches include cytotoxic chemotherapies, poly(ADP-ribose) polymerase (PARP) inhibitors, bevacizumab, hormonal therapy, immunotherapy, and antibody-drug conjugates (ADCs). In this review we discuss immune evasion mechanisms in OC and the role of genetics, the tumor microenvironment, and tumor heterogeneity in influencing these processes. We also discuss the use of immunotherapies for OC treatment, either alone or in combination with other anticancer agents, with a focus on their clinical outcomes. Finally, we highlight emerging immunotherapies that have either succeeded or are on the verge of significantly impacting cancer treatment, and we discuss their potential utility in the effective treatment of OC.</p>","PeriodicalId":54412,"journal":{"name":"Trends in Immunology","volume":" ","pages":"166-181"},"PeriodicalIF":13.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835538/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143042884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Macrophages boosting human skin morphogenesis. 巨噬细胞促进人体皮肤形态发生。
IF 13.1 1区 医学
Trends in Immunology Pub Date : 2025-01-01 Epub Date: 2024-12-10 DOI: 10.1016/j.it.2024.11.009
Martin E Baumdick, Madeleine J Bunders
{"title":"Macrophages boosting human skin morphogenesis.","authors":"Martin E Baumdick, Madeleine J Bunders","doi":"10.1016/j.it.2024.11.009","DOIUrl":"10.1016/j.it.2024.11.009","url":null,"abstract":"<p><p>Gopee and colleagues' recent analyses of diverse high-dimensional datasets of prenatal and adult skin, together with data from complex skin organoids, uncover the important contributions of macrophages in modulating prenatal skin development, scarless wound healing, and angiogenesis. These findings identify a role for skin immune cells in tissue development.</p>","PeriodicalId":54412,"journal":{"name":"Trends in Immunology","volume":" ","pages":"1-3"},"PeriodicalIF":13.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142815030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting molecular pathways to control immune checkpoint inhibitor toxicities. 靶向分子途径控制免疫检查点抑制剂毒性。
IF 13.1 1区 医学
Trends in Immunology Pub Date : 2025-01-01 Epub Date: 2024-12-27 DOI: 10.1016/j.it.2024.11.014
Robin Reschke, Ryan J Sullivan, Evan J Lipson, Alexander H Enk, Thomas F Gajewski, Jessica C Hassel
{"title":"Targeting molecular pathways to control immune checkpoint inhibitor toxicities.","authors":"Robin Reschke, Ryan J Sullivan, Evan J Lipson, Alexander H Enk, Thomas F Gajewski, Jessica C Hassel","doi":"10.1016/j.it.2024.11.014","DOIUrl":"10.1016/j.it.2024.11.014","url":null,"abstract":"<p><p>Immune checkpoint inhibitors (ICIs) have transformed cancer treatment but are frequently associated with immune-related adverse events (irAEs). This article offers a novel synthesis of findings from both preclinical and clinical studies, focusing on the molecular mechanisms driving irAEs across diverse organ systems. It examines key immune cells, such as T cell subsets and myeloid cells, which are instrumental in irAE pathogenesis, alongside an in-depth analysis of cytokine signaling [interleukin (IL)-6, IL-17, IL-4), interferon γ (IFN-γ), IL-1β, tumor necrosis factor α (TNF-α)], integrin-mediated interactions [integrin subunits αITGA)4 and ITGB7], and microbiome-related factors that contribute to irAE pathology. This exploration of modifiable pathways uncovers new opportunities to mitigate irAEs by using available antibodies (Abs) that target key inflammatory molecules across tumor types, while ideally preserving the antitumor efficacy of ICIs.</p>","PeriodicalId":54412,"journal":{"name":"Trends in Immunology","volume":" ","pages":"61-73"},"PeriodicalIF":13.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142900478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting immune evasion in hepatocellular carcinoma-initiating cells. 肝癌起始细胞的靶向免疫逃避。
IF 13.1 1区 医学
Trends in Immunology Pub Date : 2025-01-01 Epub Date: 2024-12-24 DOI: 10.1016/j.it.2024.12.002
Rafael Sirera, Manuel Beltrán-Visiedo, Lorenzo Galluzzi
{"title":"Targeting immune evasion in hepatocellular carcinoma-initiating cells.","authors":"Rafael Sirera, Manuel Beltrán-Visiedo, Lorenzo Galluzzi","doi":"10.1016/j.it.2024.12.002","DOIUrl":"10.1016/j.it.2024.12.002","url":null,"abstract":"<p><p>Tumor-initiating cells (TICs) are particularly efficient at evading detection and elimination by the human immune system. Recent data from Yang and collaborators demonstrate that - at least in preclinical hepatocellular carcinoma models - the immunological privilege of CD49f<sup>+</sup> TICs can be limited by targeting CD155, resulting in restored sensitivity to immune checkpoint inhibitors.</p>","PeriodicalId":54412,"journal":{"name":"Trends in Immunology","volume":" ","pages":"4-6"},"PeriodicalIF":13.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142900473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Born to be wild: utilizing natural microbiota for reliable biomedical research. 天生野性:利用天然微生物群进行可靠的生物医学研究。
IF 13.1 1区 医学
Trends in Immunology Pub Date : 2025-01-01 Epub Date: 2024-12-16 DOI: 10.1016/j.it.2024.11.013
Philipp Bruno, Thomas Schüler, Stephan P Rosshart
{"title":"Born to be wild: utilizing natural microbiota for reliable biomedical research.","authors":"Philipp Bruno, Thomas Schüler, Stephan P Rosshart","doi":"10.1016/j.it.2024.11.013","DOIUrl":"10.1016/j.it.2024.11.013","url":null,"abstract":"<p><p>Laboratory mice housed under specific pathogen-free (SPF) conditions are the standard model in biomedical research. However, experiments with a particular inbred mouse strain performed in different laboratories often yield inconsistent or conflicting data due to housing-specific variations in the composition and diversity of SPF microbiota. These variations affect immune and nonimmune cell functions, leading to systemic physiological changes. Consequently, microbiota-dependent inconsistencies have raised general doubts regarding the suitability of mice as model organisms. Since stability positively correlates with biological diversity, we postulate that increasing species diversity can improve microbiota stability and mouse physiology, enhancing robustness, reproducibility, and experimental validity. Similar to the generation of inbred mouse strains in the last century, we suggest a worldwide initiative to define a transplantable 'wild' microbiota that stably colonizes mice irrespective of housing conditions.</p>","PeriodicalId":54412,"journal":{"name":"Trends in Immunology","volume":" ","pages":"17-28"},"PeriodicalIF":13.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142848400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信