Javeed Iqbal Reshi, M․Tariq Banday, Farooq A. Khanday
{"title":"Modelling of novel ultra-efficient single layer nano-scale adder-subtractor in QCA nanotechnology","authors":"Javeed Iqbal Reshi, M․Tariq Banday, Farooq A. Khanday","doi":"10.1016/j.nancom.2025.100564","DOIUrl":"10.1016/j.nancom.2025.100564","url":null,"abstract":"<div><div>Quantum dot Cellular Automata is considered as promising alternative technology for designing nanoscale circuits. It operates on the principle derived from quantum mechanics and utilizes quantum dots as building blocks for information processing and computations. QCA offers numerous benefits including ultra-low energy dissipation, enhanced performance, high device density, resistance to scaling limitations and inherent parallelism. Previous realizations of Quantum Dot Cellular Automata (QCA) based-adder and subtractor circuits faced significant challenges like cell count, complexity and energy dissipation. This paper, proposes novel designs of adder-subtractor circuits based on novel 3-input XOR gate. The proposed circuits do not require any rotated cells or crossovers and are based on single layer design that eases the manufacturability. In addition, the proposed designs demonstrate significant reduction in cell count, complexity and energy dissipation compared to best known prior counterparts. Specifically, the reductions are 14.28 %, 42.85 %, and 56.66 % for adder, subtractor and adder-subtractor respectively. These improvements signify a substantial gain in circuit efficiency. The functional validity of the proposed layouts is verified using QCADesigner 2.0.3 simulator. The power efficiency analysis has been performed using QCADesigner-E tool, which enables the designer to analyse, optimize and validate the power consumption characteristics of the proposed circuits. The overall energy consumption of adder, subtractor and adder-subtractor is reported to be 1.10e-002 eV, 1.12e-002 eV, 1.06e-002 eV respectively. Additionally, the average energy dissipation of 9.96e-004 eV, 1.02e-003 eV, 9.63e-004 eV was observed using QCADesigner-E tool.</div></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"43 ","pages":"Article 100564"},"PeriodicalIF":2.9,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143169322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Energy harvesting-based thermal aware routing protocol for lung terahertz nanosensor networks","authors":"Juan Xu, Xin Li, Jiali Kan, Ruofan Wang","doi":"10.1016/j.nancom.2025.100563","DOIUrl":"10.1016/j.nancom.2025.100563","url":null,"abstract":"<div><div>Lung damage caused by viral infections such as COVID-19, MERS, and SARS can lead to serious or even fatal conditions. Therefore, monitoring lung diseases at the nanoscale has great potential for development. Some biomedical sensors implanted in the human body can generate electromagnetic radiation, and excessive emission power may pose a serious threat to tissues in the human body. Therefore, while constructing lung wireless nanosensor network (WNSN), we need to consider the limited energy storage and potential thermal effects of nanosensors. In this paper, an energy harvesting-based thermal aware routing (EHTAR) protocol is proposed. The protocol introduces a piezoelectric energy harvesting system to charge the nanonodes and proposes a sleep-wake mechanism for node temperature and energy to establish a next-hop link cost function using node temperature, remaining energy, and distance as cost factors. Simulation results demonstrate that EHTAR makes the node temperature not exceed the set threshold and the energy harvesting mechanism can greatly extend the network survival, so EHTAR can be better applied in the lung health monitoring scenario.</div></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"43 ","pages":"Article 100563"},"PeriodicalIF":2.9,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143169321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design of triband circularly polarized hexagon shaped patch antenna using optimized Siamese heterogeneous convolutional neural networks for 5G wireless communication system","authors":"Venkat S , Tapas Bapu B R , Radhika R , Aruna V V","doi":"10.1016/j.nancom.2024.100562","DOIUrl":"10.1016/j.nancom.2024.100562","url":null,"abstract":"<div><div>The advent of 5G wireless communication systems necessitates the development of advanced antenna designs that offer superior performance across multiple frequency bands. Traditional patch antenna design methods, involving iterative simulations, are time-consuming and often insufficient in fully exploring the vast design space and provide less efficiency. To overcome these issues, this work proposes a novel approach for designing a triband circularly polarized hexagon-shaped patch antenna optimized for 5G applications using an Optimized Siamese Heterogeneous Convolutional Neural Network (SHCNN) coupled with a Circle-Inspired Optimization Algorithm (CIOA). Initially, the triband circularly polarized hexagon-shaped patch antenna is designed. The proposed approach leverages SHCNN to learn the relationship between antenna geometry and performance characteristics, utilizing two identical subnetworks with heterogeneous convolutional layers for efficient feature extraction from varied hexagonal antenna geometries. The CIOA, inspired by the properties of circles such as uniformity and symmetry, refines the antenna design suggested by the SHCNN to achieve optimal triband CP performance. This methodology significantly reduces design time by suggesting promising geometries, explores a vast design space for potential novel configurations, and ensures efficient optimization for optimal performance within the desired frequency bands. Applications include compact, high-performance antennas for 5G base stations and user equipment, enhancing multi-band signal transmission and reception. The introduced antenna design is compiled using MATLAB and HFSS platforms. The simulation results of the proposed antenna, employing SHCNN<img>CIOA methods and operating across three frequency bands (triband) such as low (600 MHz - 1 GHz), mid (2.5GHz - 3.7 GHz), and high (24 GHz - 28 GHz), achieve a gain of 8–10 dB, a return loss of less than -20 dB, higher efficiency at 98 %, and a lower VSWR of 1.5 compared with existing designs.</div></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"43 ","pages":"Article 100562"},"PeriodicalIF":2.9,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143169320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bitop Maitra , Emine Bardakci , Oktay Cetinkaya , Ozgur B. Akan
{"title":"Internet of harvester nano things: A future prospects","authors":"Bitop Maitra , Emine Bardakci , Oktay Cetinkaya , Ozgur B. Akan","doi":"10.1016/j.nancom.2024.100550","DOIUrl":"10.1016/j.nancom.2024.100550","url":null,"abstract":"<div><div>The advancements in nanotechnology, material science, and electrical engineering have shrunk the sizes of electronic devices down to the micro/nanoscale. This brings the opportunity of developing the Internet of Nano Things (IoNT), an extension of the Internet of Things (IoT). With nanodevices, numerous new possibilities emerge in the biomedical, military fields, and industrial products. However, a continuous energy supply is mandatory for these devices to work. At the micro/nanoscale, batteries cannot supply this demand due to size limitations and the limited energy contained in the batteries. Internet of Harvester Nano Things (IoHNT), a concept of Energy Harvesting (EH) integrated with wireless power transmission (WPT) techniques, converts the existing different energy sources into electrical energy and transmits to IoNT nodes. As IoHNTs are not directly attached to IoNTs, it gives flexibility in size. However, we define the size of IoHNTs as up to 10 cm. In this review, we comprehensively investigate the available energy sources and EH principles to wirelessly power IoNTs. We discuss the IoHNT principles, material selections, and state-of-the-art applications of each energy source for different sectoral applications. The different technologies of WPT and how communication is influenced by the incorporation of IoHNTs to power IoNTs are discussed with the future research directions. IoHNTs represent a shift in the nanodevice power supply, leading us towards a future where wireless technology is widespread. Hence, it will motivate researchers to envision and contribute to advancing the following power revolution in IoNT, providing unmatched simplicity and efficiency.</div></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"43 ","pages":"Article 100550"},"PeriodicalIF":2.9,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143168206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hadi Rasmi , Mohammad Mosleh , Nima Jafari Navimipour , Mohammad Kheyrandish
{"title":"Towards a scalable and efficient full- adder structure in atomic silicon dangling band technology","authors":"Hadi Rasmi , Mohammad Mosleh , Nima Jafari Navimipour , Mohammad Kheyrandish","doi":"10.1016/j.nancom.2024.100561","DOIUrl":"10.1016/j.nancom.2024.100561","url":null,"abstract":"<div><div>Atomic Silicon Dangling Bond (ASDB) is a promising new nanoscale technology for fabricating logic gates and digital circuits. This technology offers tremendous advantages, such as small size, high speed, and low power consumption. As science and technology progress, ASDB technology may eventually replace the current VLSI technology. This nanoscale technology is still in its early stages of development. Recently, many computing circuits, such as full-adder, have been designed. However, these circuits have a common fundamental problem; they consume a lot of energy and occupy a lot of area, which reduces the performance of complex circuits. This paper proposes a novel ASDB layout for designing an efficient full-adder circuit in ASDB technology. Moreover, a four-bit ASDB ripple carry adder(RCA) is designed using the proposed ASDB full-adder. The proposed ASDB full-adder not only improves the stability of the output but also surpasses the previous works, in terms of energy and accuracy,by 90% and 38%, respectively. Also, it has very favorable conditions in terms of occupied area and is resistant to DB misalignment defects.</div></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"43 ","pages":"Article 100561"},"PeriodicalIF":2.9,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143168207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Beyond 5G: Exploring key enabling technologies, use cases, and future prospects of 6 G communication","authors":"Nagarjuna Telagam , Nehru Kandasamy , Arun Kumar Manoharan , Palani Anandhi , Raji Atchudan","doi":"10.1016/j.nancom.2024.100560","DOIUrl":"10.1016/j.nancom.2024.100560","url":null,"abstract":"<div><div>As the world continues to embrace digital transformation, there is a growing need for even more advanced communication technologies to meet the demands of massive connectivity, huge data rates, and low latency requirements. 6 G is the next frontier in wireless communication. This technology explores breakthroughs in different fields, such as terahertz communication, massive multiple-input multiple-output (MIMO), and even quantum communication. This review paper explains the advancements, Challenges, and future directions in the 6 G wireless communication networks. Furthermore, this paper discusses the challenges and opportunities in realizing the vision of 6 G communication, ranging from spectrum allocation and hardware design to security and ethical considerations. The key technologies, such as visible light communications, holographic messaging, and concepts on subterahertz frequencies are explained briefly. This paper also deals with practical considerations such as heterogeneous multi-layer mobile edge computing, intelligent vehicular networks, and deep learning communication systems. Furthermore, fundamental concepts such as massive MIMO and spatial division of multiple access are analyzed. The key enabling technologies that shape the 6 G use cases and their challenges are also discussed. Finally, this paper concludes by outlining the potential candidate technologies for future research and innovation, emphasizing the importance of collaborative efforts to realize the transformative potential of 6 G technology.</div></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"43 ","pages":"Article 100560"},"PeriodicalIF":2.9,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143169323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"RT-SVM: Channel modeling and analysis for indoor terahertz communication scenarios","authors":"Mohamed El Jbari, Mohamed Moussaoui","doi":"10.1016/j.nancom.2024.100551","DOIUrl":"10.1016/j.nancom.2024.100551","url":null,"abstract":"<div><div>Considering the increasing demands for wireless communication networks and information system applications, the wireless sector must meet the pressing requirement for high-speed technological advances. The terahertz (THz) frequency band, spanning 0.3 to 10 THz, is of significant interest in current technological innovations and academic research in telecommunications. The THz frequency band has unique properties, including high time-resolving power (femtosecond) and low absorption. This paper proposes a THz propagation ultra-wideband (UWB) channel model and coding scheme for indoor environments starting from 0.3 THz. First, we investigated the propagation path loss model by considering the effects of transmitter dimensions, molecular absorption, and attenuation as functions of frequency and distance. We developed models for power propagation delay, multiple input multiple output (MIMO) systems and discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-s-OFDM) response channels. Using the standard Saleh–Valenzuela model combined with Ray-tracing (RT-SVM), we studied the transmission of THz signals in indoor scenarios. We introduced physical parameters relevant to the THz indoor channel, such as line-of-sight (LoS) path loss, power distributions, temporal and spatial properties, and associations between THz multipath properties. These parameters were integrated with the RT-SVM channel model and applied to THz indoor communication. Numerical simulations demonstrate that the proposed hybrid channel model enhances THz system performance and outperforms traditional statistical and geometric-based stochastic channel models in terms of temporal and spatial dimensions, contributing to frequency loss variations.</div></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"43 ","pages":"Article 100551"},"PeriodicalIF":2.9,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143169324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Crosstalk analysis of multilayer graphene nanoribbon interconnects in GHz regime: Unraveling scattering induced effects","authors":"Akanksha Upadhyay, Mayank Kumar Rai, Rajesh Khanna","doi":"10.1016/j.nancom.2024.100552","DOIUrl":"10.1016/j.nancom.2024.100552","url":null,"abstract":"<div><div>This paper analyzes the impact of high-frequency phenomena on the operational characteristics of intercalation-doped horizontal top-contact multilayer graphene nanoribbon (D-HTC-MLGNR) interconnects. The purpose is to explore their viability for utilization in high-frequency circuit design. A methodology incorporating the scattering-limited realistic mean free path and a finite thickness-dependent skin effect model is proposed for extracting the frequency-dependent impedance of MLGNR interconnects. By employing the proposed methodology, the frequency-dependent characteristics of scattering-limited impedance parameters and crosstalk effects in d-HTC-MLGNR interconnects are examined and compared with undoped MLGNR (viz. HTC and vertical top-contact) and copper (Cu) counterparts (smooth and rough). The findings indicate that Cu variants outperform scattering-limited MLGNR variants placed on SiO<sub>2</sub> substrate in terms of crosstalk effects. However, Li-doped HTC-MLGNR without surface polar phonons (SPPs) and edge roughness (ER) placed on SiC and BN substrates demonstrates superior crosstalk-induced performance than Cu counterparts. Furthermore, in the absence of SPPs and ER, Li-D HTC-MLGNR placed on SiC has a minimum average percentage increase in overshoot peak amplitude, overshoot width, and delay of 6.6%, 0.18%, and 15.6%, respectively, for the entire frequency range, implying minimum impact of frequency variations and skin effect.</div></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"42 ","pages":"Article 100552"},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142747191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Halil Umut Ozdemir, Halil Ibrahim Orhan, Meriç Turan, Bariş Büyüktaş, H. Birkan Yilmaz
{"title":"Estimating channel coefficients for complex topologies in 3D diffusion channel using artificial neural networks","authors":"Halil Umut Ozdemir, Halil Ibrahim Orhan, Meriç Turan, Bariş Büyüktaş, H. Birkan Yilmaz","doi":"10.1016/j.nancom.2024.100549","DOIUrl":"10.1016/j.nancom.2024.100549","url":null,"abstract":"<div><div>Molecular communication via diffusion (MCvD) is one of the paradigms in nanonetworks. Finding an approximation or analytical solution for the fraction of the received molecules to analyze the channel behavior is essential in molecular communication. Current studies propose approximations to model simple channel topologies, i.e. topologies with few nodes. To model complex channel topologies, time-consuming particle-based Monte Carlo simulations are used. We propose MCvD-Transformer to avoid the time-consuming simulations and estimate the fraction of the received molecules for complex topologies. MCvD-Transformer is trained via instances containing various topologies and time-dependent estimations for a fraction of received molecules estimated by particle-based Monte Carlo simulations. Finally, MCvD-Transformer is compared with both the studies in the literature and the simulations. As a result, MCvD-Transformer performs better than literature studies in terms of root mean squared error and maximum normalized absolute error metrics on our test dataset. Therefore, the proposed model is more accurate in modeling complex MCvD topologies than the current state of the art without time-consuming simulations. Additionally, it is expected to be a benchmark for the works that focus on complex MCvD topologies.</div></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"42 ","pages":"Article 100549"},"PeriodicalIF":2.9,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142650668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Terahertz beam shaping using space-time phase-only coded metasurfaces","authors":"Sahar Solati Masouleh, Seyed Ehsan Hosseininejad","doi":"10.1016/j.nancom.2024.100548","DOIUrl":"10.1016/j.nancom.2024.100548","url":null,"abstract":"<div><div>Digital metasurfaces as space-coded surfaces composed of a set of sub-wavelength meta-atoms enable extraordinary capabilities to manipulate electromagnetic waves. Recently, amplitude-phase-joint-coding metasurfaces have been proposed to achieve enhanced beam shaping. However, design of a unit cell structure with a full manipulation of amplitude and phase of the reflected beam is challenging and this kind of unit cell structures are complicated. This paper proposes a space-time phase-only metasurface based on simple graphene-based unit cell that is digitally coded and arranged with a specific time sequence, allowing the effective simultaneous manipulation of both phase and amplitude. In this way, it is demonstrated that the terahertz beam can be shaped using the proposed metasurface.</div></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"42 ","pages":"Article 100548"},"PeriodicalIF":2.9,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142553581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}