Bhagwati Sharan , Raja Manjula , Sindhu Hak Gupta , Asmita Rajawat , Anirban Ghosh , Raja Datta
{"title":"Gold-based nanoantenna design using golden ratio optimization for in-vivo communication at terahertz frequency","authors":"Bhagwati Sharan , Raja Manjula , Sindhu Hak Gupta , Asmita Rajawat , Anirban Ghosh , Raja Datta","doi":"10.1016/j.nancom.2025.100575","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, a novel microstrip patch antenna of size 210 × 205 × 22 <span><math><mrow><mi>μ</mi><msup><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span> operating in the terahertz band is proposed. We then perform optimization of the proposed antenna using the Golden Ratio technique to realize an antenna with reduced dimensions and better performance. The optimized nanoantenna has reduced dimensions of 120 × 160 × 14 <span><math><mrow><mi>μ</mi><msup><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span> (<span><math><mo>≈</mo></math></span> 71.61 % reduction in volume); improved return loss S11 (<span><math><mo><</mo></math></span> -45.43 dB); gain (<span><math><mo>></mo></math></span> 5.29 dBi), and bandwidth (156.9 GHz i.e., 45% more). The results are validated through an equivalent circuit model (ECM) in Advanced Design System (ADS), demonstrating good agreement with the CST Studio results. Next, a human heart-phantom model has been created and tested for each designed scenario. It examines the interactions between the heart tissues and the proposed antenna, and it identifies the substrate material that performs the best. The results show that polytetrafluoroethylene (PTFE) material performs better than other substrates. Additionally, the research includes an analysis of the link budget of terahertz channels in the intrabody nanocommunication networks—a bio-medical application. The findings indicate the feasibility of using nanoantennas for practical <em>in-vivo</em> nanocommunications.</div></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"44 ","pages":"Article 100575"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Communication Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878778925000134","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, a novel microstrip patch antenna of size 210 × 205 × 22 operating in the terahertz band is proposed. We then perform optimization of the proposed antenna using the Golden Ratio technique to realize an antenna with reduced dimensions and better performance. The optimized nanoantenna has reduced dimensions of 120 × 160 × 14 ( 71.61 % reduction in volume); improved return loss S11 ( -45.43 dB); gain ( 5.29 dBi), and bandwidth (156.9 GHz i.e., 45% more). The results are validated through an equivalent circuit model (ECM) in Advanced Design System (ADS), demonstrating good agreement with the CST Studio results. Next, a human heart-phantom model has been created and tested for each designed scenario. It examines the interactions between the heart tissues and the proposed antenna, and it identifies the substrate material that performs the best. The results show that polytetrafluoroethylene (PTFE) material performs better than other substrates. Additionally, the research includes an analysis of the link budget of terahertz channels in the intrabody nanocommunication networks—a bio-medical application. The findings indicate the feasibility of using nanoantennas for practical in-vivo nanocommunications.
期刊介绍:
The Nano Communication Networks Journal is an international, archival and multi-disciplinary journal providing a publication vehicle for complete coverage of all topics of interest to those involved in all aspects of nanoscale communication and networking. Theoretical research contributions presenting new techniques, concepts or analyses; applied contributions reporting on experiences and experiments; and tutorial and survey manuscripts are published.
Nano Communication Networks is a part of the COMNET (Computer Networks) family of journals within Elsevier. The family of journals covers all aspects of networking except nanonetworking, which is the scope of this journal.