{"title":"DPOR: A data priority-based opportunity routing protocol for intra-body nanonetworks","authors":"Yi-Wei Chen , Xin-Wei Yao , Qiang Li","doi":"10.1016/j.nancom.2025.100586","DOIUrl":null,"url":null,"abstract":"<div><div>The improvement of nanocommunication technology has promoted intra-body medical applications. With the advancement of nano-devices and terahertz communication technology, the performance of intra-body nanonetworks has been continuously enhanced, making the remote medical data transmission a reality. Intra-body nanonetworks can stably transmit the physiological information captured within the human body to the distant medical service center. Considering the aqueous environment of the human body, the communication of nanonetworks is subject to environmental interference and the physical limitations of nano-devices, and traditional routing protocols are difficult to meet the communication requirements in intra-body nanonetworks. Especially in the aspect of health monitoring,different types of data have corresponding importance, and some urgent data deserve more attention. For example, signals of acute arrhythmias (such as ventricular fibrillation) detected by nano-nodes are of the highest priority. Therefore, this paper designs a Data Priority-based Opportunistic Routing (DPOR) protocol. In this protocol, nano-nodes select the appropriate relay according to the level of data priority to improve the transmission efficiency of intra-body nanonetworks. On this basis, a thermal-aware model is constructed. By restricting the energy of nano-nodes and managing the energy consumption of nodes, it prevents nodes from overheating and damaging human tissues. Simulation experiments show that this model can optimize the routing selection, extend the network lifetime, and ensure the timeliness and reliability of transmission during the data transmission process while ensuring the safety of node temperature.</div></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"46 ","pages":"Article 100586"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Communication Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878778925000249","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The improvement of nanocommunication technology has promoted intra-body medical applications. With the advancement of nano-devices and terahertz communication technology, the performance of intra-body nanonetworks has been continuously enhanced, making the remote medical data transmission a reality. Intra-body nanonetworks can stably transmit the physiological information captured within the human body to the distant medical service center. Considering the aqueous environment of the human body, the communication of nanonetworks is subject to environmental interference and the physical limitations of nano-devices, and traditional routing protocols are difficult to meet the communication requirements in intra-body nanonetworks. Especially in the aspect of health monitoring,different types of data have corresponding importance, and some urgent data deserve more attention. For example, signals of acute arrhythmias (such as ventricular fibrillation) detected by nano-nodes are of the highest priority. Therefore, this paper designs a Data Priority-based Opportunistic Routing (DPOR) protocol. In this protocol, nano-nodes select the appropriate relay according to the level of data priority to improve the transmission efficiency of intra-body nanonetworks. On this basis, a thermal-aware model is constructed. By restricting the energy of nano-nodes and managing the energy consumption of nodes, it prevents nodes from overheating and damaging human tissues. Simulation experiments show that this model can optimize the routing selection, extend the network lifetime, and ensure the timeliness and reliability of transmission during the data transmission process while ensuring the safety of node temperature.
期刊介绍:
The Nano Communication Networks Journal is an international, archival and multi-disciplinary journal providing a publication vehicle for complete coverage of all topics of interest to those involved in all aspects of nanoscale communication and networking. Theoretical research contributions presenting new techniques, concepts or analyses; applied contributions reporting on experiences and experiments; and tutorial and survey manuscripts are published.
Nano Communication Networks is a part of the COMNET (Computer Networks) family of journals within Elsevier. The family of journals covers all aspects of networking except nanonetworking, which is the scope of this journal.