Florian Lau , Lara Josephine Prange , Regine Wendt , Sarah Scheer , Christian Hyttrek , Saswati Pal , Jorge Torres Gómez , Falko Dressler , Stefan Fischer
{"title":"使用现成的生物传感器实现警报系统纳米网络的网关","authors":"Florian Lau , Lara Josephine Prange , Regine Wendt , Sarah Scheer , Christian Hyttrek , Saswati Pal , Jorge Torres Gómez , Falko Dressler , Stefan Fischer","doi":"10.1016/j.nancom.2025.100584","DOIUrl":null,"url":null,"abstract":"<div><div>DNA-based nanonetworks hold great promise for future biomedical applications, especially in the areas of early disease detection and targeted therapy. However, reliably transmitting information from the nanoscale to external monitoring systems remains a major challenge. This paper explores using commercially available continuous glucose monitoring (CGM) sensors as gateways between in vivo nanonetworks and external devices. We propose a novel architecture in which DNA-based nanosensors release glucose as a signaling molecule when disease-relevant biomarkers are detected. CGM systems can detect these glucose surges, enabling real-time external communication. After analyzing various biosensor types, we found that CGM sensors are the most viable option due to their widespread availability, biocompatibility, and ability to measure biochemical signals. We present several architectural alternatives, calculate the required signal strength for reliable detection, and discuss potential experimental validation strategies. Our findings highlight a feasible and practical pathway toward integrating nanoscale diagnostics with existing biosensing technologies.</div></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"45 ","pages":"Article 100584"},"PeriodicalIF":4.7000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using off-the-shelf biosensors to implement gateways for alarm-system nanonetworks\",\"authors\":\"Florian Lau , Lara Josephine Prange , Regine Wendt , Sarah Scheer , Christian Hyttrek , Saswati Pal , Jorge Torres Gómez , Falko Dressler , Stefan Fischer\",\"doi\":\"10.1016/j.nancom.2025.100584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>DNA-based nanonetworks hold great promise for future biomedical applications, especially in the areas of early disease detection and targeted therapy. However, reliably transmitting information from the nanoscale to external monitoring systems remains a major challenge. This paper explores using commercially available continuous glucose monitoring (CGM) sensors as gateways between in vivo nanonetworks and external devices. We propose a novel architecture in which DNA-based nanosensors release glucose as a signaling molecule when disease-relevant biomarkers are detected. CGM systems can detect these glucose surges, enabling real-time external communication. After analyzing various biosensor types, we found that CGM sensors are the most viable option due to their widespread availability, biocompatibility, and ability to measure biochemical signals. We present several architectural alternatives, calculate the required signal strength for reliable detection, and discuss potential experimental validation strategies. Our findings highlight a feasible and practical pathway toward integrating nanoscale diagnostics with existing biosensing technologies.</div></div>\",\"PeriodicalId\":54336,\"journal\":{\"name\":\"Nano Communication Networks\",\"volume\":\"45 \",\"pages\":\"Article 100584\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Communication Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878778925000225\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Communication Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878778925000225","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Using off-the-shelf biosensors to implement gateways for alarm-system nanonetworks
DNA-based nanonetworks hold great promise for future biomedical applications, especially in the areas of early disease detection and targeted therapy. However, reliably transmitting information from the nanoscale to external monitoring systems remains a major challenge. This paper explores using commercially available continuous glucose monitoring (CGM) sensors as gateways between in vivo nanonetworks and external devices. We propose a novel architecture in which DNA-based nanosensors release glucose as a signaling molecule when disease-relevant biomarkers are detected. CGM systems can detect these glucose surges, enabling real-time external communication. After analyzing various biosensor types, we found that CGM sensors are the most viable option due to their widespread availability, biocompatibility, and ability to measure biochemical signals. We present several architectural alternatives, calculate the required signal strength for reliable detection, and discuss potential experimental validation strategies. Our findings highlight a feasible and practical pathway toward integrating nanoscale diagnostics with existing biosensing technologies.
期刊介绍:
The Nano Communication Networks Journal is an international, archival and multi-disciplinary journal providing a publication vehicle for complete coverage of all topics of interest to those involved in all aspects of nanoscale communication and networking. Theoretical research contributions presenting new techniques, concepts or analyses; applied contributions reporting on experiences and experiments; and tutorial and survey manuscripts are published.
Nano Communication Networks is a part of the COMNET (Computer Networks) family of journals within Elsevier. The family of journals covers all aspects of networking except nanonetworking, which is the scope of this journal.