Cardiovascular Engineering and Technology最新文献

筛选
英文 中文
Bare Metal Stenting for Residual Arch Dissections: A Computational Analysis. 残弓解剖裸金属支架:计算分析。
IF 1.8 4区 医学
Cardiovascular Engineering and Technology Pub Date : 2025-08-04 DOI: 10.1007/s13239-025-00799-6
Žiga Donik, Sanjeev Dhara, Willa Li, Blessing Nnate, Seth Sankary, Kayla Polcari, Mary Alyssa Varsanik, Kameel Khabaz, Ross Milner, Nhung Nguyen, Janez Kramberger, Luka Pocivavsek
{"title":"Bare Metal Stenting for Residual Arch Dissections: A Computational Analysis.","authors":"Žiga Donik, Sanjeev Dhara, Willa Li, Blessing Nnate, Seth Sankary, Kayla Polcari, Mary Alyssa Varsanik, Kameel Khabaz, Ross Milner, Nhung Nguyen, Janez Kramberger, Luka Pocivavsek","doi":"10.1007/s13239-025-00799-6","DOIUrl":"https://doi.org/10.1007/s13239-025-00799-6","url":null,"abstract":"<p><strong>Purpose: </strong>Type A Thoracic Aortic Dissections are a highly morbid and complex clinical challenge often managed with hemiarch or total arch repair. Hemiarch repair is more commonly performed due to improved neurologic morbidity profile however it leaves behind a residual dissection flap which can lead to aneurysmal degeneration. Bare metal stent placement in conjunction with hemiarch repair is a novel technique which can theoretically avoid leaving a residual dissection flap. In this paper we analyze the biomechanical changes observed after in silico deployment of a bare metal stent in a post-hemiarch type A aortic dissection.</p><p><strong>Methods: </strong>We obtain computed tomography scans from pre-operative bare metal stent patients and perform high-fidelity segmentations. This geometry is then utilized for in silico stent deployment via finite element analysis. Deformed geometries are then utilized for computational fluid dynamic simulations to analyze the evolution of pressure gradients in the aorta.</p><p><strong>Results: </strong>We analyze the resulting geometry from in silico stent deployment for three different stiffness ratios between the flap and aortic wall. We demonstrate an acceptable stress evolution in the stent across all 3 stiffness configurations. We show a reduction in the false luminal volume across all stiffness ratios. Our analysis of pressure distributions that evolve in the aorta show that even in scenarios of high flap stiffness, where the false lumen volume shrinks correspondingly less, we still achieve a reduction in the pressure gradient across the aorta.</p><p><strong>Conclusion: </strong>We show that bare metal stent deployment hemodynamically stabilizes the aorta via our finite element analysis and subsequent computational fluid dynamic modelling.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144785961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Initial Opening Morphology of Polymeric Valves on Hemodynamic Performance. 聚合物瓣膜初始开口形态对血流动力学性能的影响。
IF 1.8 4区 医学
Cardiovascular Engineering and Technology Pub Date : 2025-08-01 Epub Date: 2025-06-02 DOI: 10.1007/s13239-025-00789-8
Shihong Liu, Xiaofan Zheng, Yuqi Cao, Wenshuo Wang, Lai Wei, Shengzhang Wang
{"title":"Effect of Initial Opening Morphology of Polymeric Valves on Hemodynamic Performance.","authors":"Shihong Liu, Xiaofan Zheng, Yuqi Cao, Wenshuo Wang, Lai Wei, Shengzhang Wang","doi":"10.1007/s13239-025-00789-8","DOIUrl":"10.1007/s13239-025-00789-8","url":null,"abstract":"<p><strong>Purpose: </strong>In order to explore the correlation between the initial morphology of the valve and hemodynamic and valve dynamic performance, this study is based on the fact that polymeric prostheses are more convenient to manufacture, and have the possibility of preparing complex geometric shapes and directly obtaining the initial morphologies of different valves, aims to research the effect of different initial opening morphologies of polymeric valves on hemodynamic performance.</p><p><strong>Method: </strong>Valve models with different opening shapes were established. Polyurethane materials were used to manufacture the valve samples by dip-coating molding. The stress distribution of three different initial opening shapes was compared by finite element simulation. The hemodynamics and the leaflets dynamic performance of the three polymeric valves were analyzed by in vitro pulsatile flow experiments and particle image velocity measurement experiments.</p><p><strong>Results: </strong>The valve morphology at 0.025s, 0.053s, and 0.079s was selected as the initial shape and was recorded as PHV1, PHV2, and PHV3. Finite element analysis found that during the systolic phase, the stress concentration area of PHV1 was the highest among the three types of valves, while during the diastolic phase, the stress concentration area of PHV1 was the lowest. Similarly, the maximum principal strain of PHV1, PHV2, and PHV3 decreased in turn at the time of peak systole but increased in turn at the time of peak diastole. In vitro testing results showed that valves with smaller opening areas had smaller regurgitant volume, while valves with larger opening areas had larger EOA, as well as smaller vorticity and viscous shear stress.</p><p><strong>Conclusion: </strong>Valves with a smaller initial opening area have a better effect in preventing regurgitation, whereas valve with a larger initial opening area has a larger opening area and a lower risk of thrombosis. Therefore, comprehensive considerations are needed when designing the initial morphology of the polymeric artificial heart valve.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":" ","pages":"481-492"},"PeriodicalIF":1.8,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144210238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Fully Automatic Pipeline of Identification, Segmentation, and Subtyping of Aortic Dissection from CT Angiography. 从CT血管造影中识别、分割和分型主动脉夹层的全自动流水线。
IF 1.8 4区 医学
Cardiovascular Engineering and Technology Pub Date : 2025-08-01 Epub Date: 2025-06-06 DOI: 10.1007/s13239-025-00787-w
Changjin Zhuang, Yanan Wu, Qianqian Qi, Shuiqing Zhao, Yu Sun, Jie Hou, Wei Qian, Benqiang Yang, Shouliang Qi
{"title":"A Fully Automatic Pipeline of Identification, Segmentation, and Subtyping of Aortic Dissection from CT Angiography.","authors":"Changjin Zhuang, Yanan Wu, Qianqian Qi, Shuiqing Zhao, Yu Sun, Jie Hou, Wei Qian, Benqiang Yang, Shouliang Qi","doi":"10.1007/s13239-025-00787-w","DOIUrl":"10.1007/s13239-025-00787-w","url":null,"abstract":"<p><strong>Purpose: </strong>Aortic dissection (AD) is a rare condition with a high mortality rate, necessitating accurate and rapid diagnosis. This study develops an automated deep learning pipeline for identifying, segmenting, and Stanford subtyping AD using computed tomography angiography (CTA) images.</p><p><strong>Methods: </strong>This pipeline consists of four interconnected modules: aorta segmentation, AD identification, true lumen (TL) and false lumen (FL) segmentation, and Stanford subtyping. In the aorta segmentation module, a 3D full-resolution nnU-Net is trained. The segmented aorta's boundary is extracted using morphological operations and projected from multiple views in the AD identification module. AD identification is then performed using the multi-view projection data. For AD cases, a 3D nnU-Net is further trained for TL/FL segmentation based on the segmented aorta. Finally, a network is trained for Stanford subtyping using multi-view maximum density projections of the segmented TL/FL. A total of 386 CTA scans were collected for training, validation, and testing of the pipeline.</p><p><strong>Results: </strong>For AD identification, the method achieved an accuracy of 0.979. The TL/FL segmentation for TypeA-AD and Type-B-AD achieved average Dice coefficient of 0.968 for TL and 0.971 for FL. For Stanford subtyping, the multi-view method achieved an accuracy of 0.990.</p><p><strong>Conclusion: </strong>The automated pipeline enables rapid and accurate identification, segmentation, and Stanford subtyping of AD using CTA images, potentially accelerating the diagnosis and treatment. The segmented aorta and TL/FL can also serve as references for physicians. The code, models, and pipeline are publicly available at https://github.com/zhuangCJ/A-pipeline-of-AD.git .</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":" ","pages":"465-480"},"PeriodicalIF":1.8,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144250870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Validation of a Mathematical Model for Rupture Status of Spherical Intracranial Aneurysms. 球形颅内动脉瘤破裂状态数学模型的验证。
IF 1.8 4区 医学
Cardiovascular Engineering and Technology Pub Date : 2025-08-01 Epub Date: 2025-04-16 DOI: 10.1007/s13239-025-00782-1
Seth Street, Mark D Johnson, John Na, Paolo Palmisciano, Samer Hoz, Lauren Schaffer, Geet Shukla, Aaron Grossman, Matthew Smith, Peyman Shirani, Jonathan Forbes, Norberto Andaluz, David Dierker, Charles J Prestigiacomo
{"title":"Validation of a Mathematical Model for Rupture Status of Spherical Intracranial Aneurysms.","authors":"Seth Street, Mark D Johnson, John Na, Paolo Palmisciano, Samer Hoz, Lauren Schaffer, Geet Shukla, Aaron Grossman, Matthew Smith, Peyman Shirani, Jonathan Forbes, Norberto Andaluz, David Dierker, Charles J Prestigiacomo","doi":"10.1007/s13239-025-00782-1","DOIUrl":"10.1007/s13239-025-00782-1","url":null,"abstract":"<p><strong>Purpose: </strong>An accurate mathematical model of intracranial aneurysm (IA) mechanics is of great value for its potential utility in assessing probability of IA rupture. Such a model for spherical IAs has been developed which predicts a wall-thickness-to-IA-radius ratio (WTR) of 6.1 × 10<sup>-3</sup> at which IAs rupture. To our knowledge, no further work has been done to validate this model with clinical data. We aim to assess the accuracy and utility of this model of spherical IA rupture mechanics.</p><p><strong>Methods: </strong>Aneurysm height, width, neck diameter, and vessel radius were measured on radiologic images of IAs of the basilar terminus, anterior communicating, and posterior communicating arteries. Geometric modeling was used to approximate IA wall thickness. Calculations were performed with and without accounting for changes in IA morphology which have been shown to occur post-rupture. Receiver operating characteristic (ROC) curves and positive likelihood ratios (LR) were produced for WTR, aspect ratio (AR), bottleneck factor (BF), and size ratio (SR). Logistic regression analysis was performed to determine the WTR where there is a 50% chance of presentation as a ruptured aneurysm in our cohort.</p><p><strong>Results: </strong>52 unruptured and 28 ruptured spherical IAs were included. ROC curve analysis revealed similar areas under the curve for WTR, AR, BF, and SR, ranging from 0.636 to 0.773 with overlapping confidence intervals. LRs ranged from 1.34 (95% CI 1.09-1.65) for AR calculated with post-rupture dimensional adjustments to 2.14 (95% CI 1.45-3.14) for WTR and BF calculated without post-rupture adjustments. Logistic regression revealed a strong association between decreased WTR and rupture status. The point at which there is a 50% chance of presentation as ruptured was found to be WTR = 7.9 × 10<sup>-3</sup> when calculated without post-rupture adjustments and WTR' = 6.2 × 10<sup>-3</sup> when calculated with post-rupture adjustments, from which the proposed 6.1 × 10<sup>-3</sup> differs by 23% and 1.4%, respectively.</p><p><strong>Conclusions: </strong>The model for IA rupture mechanics assessed in this study agrees reasonably well with clinical data and could serve as a foundation for further investigation. It additionally performs well in discriminating between ruptured and unruptured aneurysms, though its performance in this dataset is similar to more conventional, simpler parameters. Most importantly, this study demonstrates that biomathematical models can provide valuable insight into the nature of aneurysmal lesions despite their simplifying assumptions.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":" ","pages":"400-409"},"PeriodicalIF":1.8,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12367843/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144044708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of an Anatomy-Mimicking, Wave Transport-Preserving Mock Circulation Loop for Evaluating Pulsatile Hemodynamics as Supported by Cardiovascular Assist Devices. 在心血管辅助装置的支持下,用于评估脉动血流动力学的解剖学模拟、波传递保存模拟循环回路的开发。
IF 1.8 4区 医学
Cardiovascular Engineering and Technology Pub Date : 2025-08-01 Epub Date: 2025-04-22 DOI: 10.1007/s13239-025-00785-y
Pong-Jeu Lu, Ming-Yao Chan, Steven Tsui, Tzung-Tza Shen, Jui-Chih Chang
{"title":"Development of an Anatomy-Mimicking, Wave Transport-Preserving Mock Circulation Loop for Evaluating Pulsatile Hemodynamics as Supported by Cardiovascular Assist Devices.","authors":"Pong-Jeu Lu, Ming-Yao Chan, Steven Tsui, Tzung-Tza Shen, Jui-Chih Chang","doi":"10.1007/s13239-025-00785-y","DOIUrl":"10.1007/s13239-025-00785-y","url":null,"abstract":"<p><strong>Objective: </strong>Assessing circulatory hemodynamics in-vitro is crucial for cardiovascular device design before in-vivo testing. Current mock circulation loops (MCLs) rely on simplified, lumped-parameter hydraulic representations of human circulation. There is a need for a more sophisticated MCL that can accurately represent the human circulatory physiology and allow for critical assessment of device-supported hemodynamics.</p><p><strong>Methods: </strong>An anatomy-mimicking MCL design guided by one-dimensional flow models has been developed, using tree-like arterial casts to create a complex system. The MCL comprises cardiac simulators, systemic circulatory subsystems consisting of 46 connected arterial casts, and lumped venous and pulmonary components. A parameter tuning process was also developed to ensure that the simulated MCL baselines are consistent with targeted healthy or heart failure scenarios.</p><p><strong>Results: </strong>Blood pressure and flow waveforms in the thoracic aorta, upper and lower limb arteries and abdominal organs (kidney, liver, spleen, etc.) were reproduced and validated against published data. Complex afferent and efferent flows in cerebral circulation and phasic coronary flow subjected to myocardial compression effect were replicated with precision. Pulse wave behavior was authentically generated and compared favorably to the published in-vivo and in-silico results.</p><p><strong>Conclusion: </strong>This wave transport-preserving MCL is able to simulate pulsatile human circulatory hemodynamics with sufficient detail and accuracy. Complex cardiovascular device-intervened hemodynamics in large arteries and end organs can be systematically assessed using this new MCL, potentially contributing to a rapid and accurate in-vitro simulation to help advance device design and functional optimization.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":" ","pages":"435-454"},"PeriodicalIF":1.8,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12367835/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144021875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing the Radiopacity of an Injectable Polymer on Fluoroscopy used for Treatment of Type II Endoleak After Endovascular Aneurysm Repair. 优化可注射聚合物在治疗II型血管内动脉瘤修复后的x线透视中的放射透明度。
IF 1.8 4区 医学
Cardiovascular Engineering and Technology Pub Date : 2025-08-01 Epub Date: 2025-03-24 DOI: 10.1007/s13239-025-00779-w
Jeffrey R Nagel, Erik Groot Jebbink, Stefan P M Smorenburg, Arjan W J Hoksbergen, Rutger J Lely, Michel Versluis, Michel M P J Reijnen
{"title":"Optimizing the Radiopacity of an Injectable Polymer on Fluoroscopy used for Treatment of Type II Endoleak After Endovascular Aneurysm Repair.","authors":"Jeffrey R Nagel, Erik Groot Jebbink, Stefan P M Smorenburg, Arjan W J Hoksbergen, Rutger J Lely, Michel Versluis, Michel M P J Reijnen","doi":"10.1007/s13239-025-00779-w","DOIUrl":"10.1007/s13239-025-00779-w","url":null,"abstract":"<p><strong>Purpose: </strong>Type II endoleaks (T2EL) are a common complication after endovascular aneurysm repair. AneuFix is a newly designed elastic polymer for T2EL. AneuFix contains tantalum for visualization during fluoroscopy, which is crucial for monitoring the polymer in the side branches. The purpose of this study was to find the lowest concentration tantalum that is sufficient for safe injection in the aneurysmal sac.</p><p><strong>Methods: </strong>AneuFix polymer with tantalum concentrations between 0 and 30% was injected into endoleak phantoms, connected to a pulsatile flow setup and with a realistic background for fluoroscopy. Furthermore, the radiopacity was investigated on fluoroscopic systems from three different vendors, using static phantoms. Results from both the dynamic and static phantoms were qualitatively evaluated by 10 clinical experts.</p><p><strong>Results: </strong>Concentrations of ≥ 20% tantalum were consistently detected within the first 5 mm after entering the side branch, with a corresponding contrast-to-noise ratio of 2.23 ± 0.21. Furthermore, sufficient detectability scores (of at least 3 out of 5) were given to ≥ 15% tantalum. Significant differences were found in detectability scores on different fluoroscopic systems, using the default lowest-radiation-dose scan protocol for each system.</p><p><strong>Conclusions: </strong>This study showed that tantalum concentrations ≥ 20% are consistently detected on fluoroscopy in the specified region. Compared to the original 30%, this would reduce imaging artifacts from high attenuation and scattering on follow-up imaging, while retaining sufficient detectability during injection. However, because of differences in fluoroscopic systems and scan protocols between hospitals, the combination of tantalum concentration and scan protocol should be optimized for each clinical setting.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":" ","pages":"377-385"},"PeriodicalIF":1.8,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12367875/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143702324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Catheter-Based Method for Denervation of Afferent Renal Nerves in Sheep. 基于导管的绵羊肾传入神经去神经的新方法。
IF 1.8 4区 医学
Cardiovascular Engineering and Technology Pub Date : 2025-08-01 Epub Date: 2025-05-06 DOI: 10.1007/s13239-025-00786-x
Arthur de la Cruz-Lynch, Brianna Dailey-Krempel, Alex Dayton, Duc T Nguyen, Roman Tyshynsky, Dusty Van Helden, Matthew Lahti, John Carney, Louise Evans, Lucy Vulchanova, John Osborn
{"title":"A Novel Catheter-Based Method for Denervation of Afferent Renal Nerves in Sheep.","authors":"Arthur de la Cruz-Lynch, Brianna Dailey-Krempel, Alex Dayton, Duc T Nguyen, Roman Tyshynsky, Dusty Van Helden, Matthew Lahti, John Carney, Louise Evans, Lucy Vulchanova, John Osborn","doi":"10.1007/s13239-025-00786-x","DOIUrl":"10.1007/s13239-025-00786-x","url":null,"abstract":"<p><strong>Purpose: </strong>Catheter-based total renal denervation (TRDN) has recently gained FDA approval to lower blood pressure in patients with treatment-resistant hypertension. Current TRDN technologies indiscriminately destroy efferent (sympathetic) and afferent (sensory) renal nerves. However, preclinical studies suggest that the beneficial effects of TRDN may be due to ablation of afferent, rather than efferent, renal nerves. We developed a novel method for chemical ablation of afferent renal nerves by periaxonal application of capsaicin which has been employed in mouse and rat models of hypertension. In certain rodent models afferent-specific renal denervation (ARDN) has been shown to lower arterial pressure to the same degree as TRDN. The objective of the present study was to develop a catheter-based method for ARDN in a large animal model with the long-term goal of translating this treatment to humans. We tested the feasibility of using the Peregrine™ catheter infusion system, currently used to perform TRDN in humans by injection of ethanol, to perform catheter-based afferent renal denervation in sheep by periaxonal application of capsaicin.</p><p><strong>Methods: </strong>Castrated, adult, male, Friesen sheep underwent Sham RDN (saline, n = 2), TRDN (ethanol, n = 4), or ARDN (capsaicin, n = 4) with the Peregrine™ catheter before termination > 2 weeks after the procedure. Denervation of renal efferents was verified by measurement of renal cortical norepinephrine (NE) content and anti-tyrosine hydroxylase (TH) staining; denervation of renal afferents was verified with anti-calcitonin gene-related peptide (CGRP) staining.</p><p><strong>Results: </strong>There was a significant decrease in TH + and CGRP + fibers in TRDN kidneys and in CGRP + but not TH + fibers in ARDN kidneys. TRDN significantly reduced renal cortical norepinephrine (NE) content by 89% while ARDN had similar NE content to Sham RDN kidneys.</p><p><strong>Conclusions: </strong>This study establishes the feasibility of performing catheter-based afferent renal denervation in a large animal model. Furthermore, this study provides a translational model to evaluate catheter-based ARDN as a potential treatment for hypertension.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":" ","pages":"455-464"},"PeriodicalIF":1.8,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12224471/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144033420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Transcatheter Edge-to-Edge Repair on Left Ventricular Flow Features. 经导管边缘对边缘修复对左心室血流特征的影响。
IF 1.8 4区 医学
Cardiovascular Engineering and Technology Pub Date : 2025-08-01 Epub Date: 2025-04-03 DOI: 10.1007/s13239-025-00781-2
Xinyi He, Shuyi Feng, Fan Wu, Hongping Wang, Shizhao Wang, Xiangbin Pan
{"title":"Effect of Transcatheter Edge-to-Edge Repair on Left Ventricular Flow Features.","authors":"Xinyi He, Shuyi Feng, Fan Wu, Hongping Wang, Shizhao Wang, Xiangbin Pan","doi":"10.1007/s13239-025-00781-2","DOIUrl":"10.1007/s13239-025-00781-2","url":null,"abstract":"<p><strong>Purpose: </strong>This study aims to investigate the effects of transcatheter edge-to-edge repair (TEER) on left ventricular hemodynamics and its potential implications for patient health.</p><p><strong>Methods: </strong>An in vitro experimental platform was designed to replicate the anatomical and functional characteristics of the left ventricle (LV). This platform integrates native porcine mitral and aortic valves with a patient-specific 3D-printed silicone LV. The LV hemodynamics after TEER is assessed using echocardiography and particle image velocimetry, focusing on critical indices such as vorticity, Reynolds shear stress (RSS), viscous shear stress (VSS), and energy dissipation rate (ε).</p><p><strong>Results: </strong>TEER effectively reduces the degree of mitral regurgitation (MR); however, it significantly increases RSS, VSS, and ε due to the formation of numerous small-scale vortices in the LV.</p><p><strong>Conclusion: </strong>These hemodynamic changes may lead to adverse left ventricular remodeling, red blood cell damage, and reduced cardiac pumping efficiency, which have to be taken into consideration to optimize the TEER procedure and improve patient outcomes.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":" ","pages":"386-399"},"PeriodicalIF":1.8,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143781979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atrioventricular Synchrony Algorithm Modeling of a Leadless Pacemaker Family: A Virtual Patient Analysis. 无导联起搏器家族的房室同步算法建模:虚拟患者分析。
IF 1.8 4区 医学
Cardiovascular Engineering and Technology Pub Date : 2025-08-01 Epub Date: 2025-05-27 DOI: 10.1007/s13239-025-00783-0
Miguel A Leal, Todd Sheldon, Keelia Escalante, Mikayle Holm, Michelle Galarneau, Kurt Stromberg, Jonathan P Piccini
{"title":"Atrioventricular Synchrony Algorithm Modeling of a Leadless Pacemaker Family: A Virtual Patient Analysis.","authors":"Miguel A Leal, Todd Sheldon, Keelia Escalante, Mikayle Holm, Michelle Galarneau, Kurt Stromberg, Jonathan P Piccini","doi":"10.1007/s13239-025-00783-0","DOIUrl":"10.1007/s13239-025-00783-0","url":null,"abstract":"<p><strong>Purpose: </strong>To assess the impact of enhancements to the Atrioventricular Synchrony (AVS) algorithms of a next generation Micra leadless pacemaker (Micra AV2).</p><p><strong>Methods: </strong>Accelerometer data were extracted from the AccelAV clinical study and were used to create virtual patients. A series of Monte Carlo simulations were run for each virtual patient to compare an enhanced Atrial Sensing Setup algorithm and Auto + A3 Threshold algorithm vs. original algorithms. A real-world survey was also conducted to observe clinical time savings from AVS programming burden reduction.</p><p><strong>Results: </strong>The enhanced Atrial Sensing Setup in Micra AV2 devices demonstrated > 70% AVS in 27 of 30 (90%) patients while 13 of 30 (43%) Micra AV patients had > 70% AVS (p < 0.001) with no manual programming. The Micra AV2 Auto + A3 Threshold without additional manual programming demonstrated improved overall ambulatory AVS in the 80-100 bpm range (84.1%). Based upon survey results, the enhanced Atrial Sensing Setup algorithm accounted for an estimated reduction in median device check time of 13 min per patient.</p><p><strong>Conclusions: </strong>Simulation-based analyses of the Micra AV2 leadless pacemaker projected significant improvements in automatic AVS at high sinus rates and an increase in the number of patients with > 70% AVS without clinician programming. Real-world survey results reported a reduction in device check time with the improvements.</p><p><strong>Significance: </strong>Improvements in the AVS algorithms in Micra AV2 allow for better automatic AVS at higher heart rates and reduced clinic utilization burden.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":" ","pages":"410-422"},"PeriodicalIF":1.8,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12367825/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144163912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Impact of Mechanical Circulatory Support Devices on White Blood Cell Phenotype and Function. 机械循环支持装置对白细胞表型和功能的影响。
IF 1.8 4区 医学
Cardiovascular Engineering and Technology Pub Date : 2025-08-01 Epub Date: 2025-04-18 DOI: 10.1007/s13239-025-00784-z
Zhuo Li, Zhenling Wei, Wangwang Su, Longhui Cheng, Liudi Zhang
{"title":"The Impact of Mechanical Circulatory Support Devices on White Blood Cell Phenotype and Function.","authors":"Zhuo Li, Zhenling Wei, Wangwang Su, Longhui Cheng, Liudi Zhang","doi":"10.1007/s13239-025-00784-z","DOIUrl":"10.1007/s13239-025-00784-z","url":null,"abstract":"<p><strong>Background: </strong>Mechanical circulatory support devices (MCSDs) have gradually become an effective treatment of end-stage heart failure (HF). However, the introduction of foreign surfaces and non-physiological shear stress (NPSS) can cause severe damage to various blood cells, leading to impaired function of immune system and increased risk of complications such as inflammation and thrombosis. The effect of mechanical injury on white blood cell (WBC) has been largely neglected compared to that on red blood cell (RBC) and platelet (PLT).</p><p><strong>Method: </strong>To better understand the impact of MCSDs on WBCs and emphasize the importance of investigating WBC damage to avoid adverse events during mechanical circulatory support, this review elaborated the induction of WBC phenotypic and functional injury by MCSD-related factors, and the relationship between injury and clinical complications. Furthermore, this article provided a detailed review and comparative analysis of in vitro blood-shearing devices (BSDs) and detection methods used in WBC damage investigation.</p><p><strong>Results: </strong>NPSS, biomaterials and other related factors can activate WBC, decrease WBC function, and promote the release of pro-inflammatory and pro-thrombotic microparticles, increasing the risk of inflammation and thrombotic complications. The evaluation of WBC damage typically involves measuring cell viability and dysfunction using in vitro BSDs (e.g. concentric cylinder devices) and injury detection methods (e.g. flow cytometry).</p><p><strong>Conclusions: </strong>WBCs with normal morphology may also experience functional failure due to NPSS from MCSDs, leading to sublethal mechanical cell injury. Therefore, the effect of MCSDs on WBCs can be more comprehensively evaluated by a combination of measuring cell functional capacity and cell counting.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":" ","pages":"423-434"},"PeriodicalIF":1.8,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144046124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信