{"title":"Genome editing techniques in plants: a comprehensive review and future prospects toward zero hunger.","authors":"Naglaa A Abdallah, Aladdin Hamwieh, Khaled Radwan, Nourhan Fouad, Channapatna Prakash","doi":"10.1080/21645698.2021.2021724","DOIUrl":"10.1080/21645698.2021.2021724","url":null,"abstract":"<p><p>Promoting sustainable agriculture and improving nutrition are the main united nation sustainable development goals by 2030. New technologies are required to achieve zero hunger, and genome editing technology is the most promising one. In the last decade, genome editing (GE) using the CRISPR/Cas system has attracted researchers as a safer and easy tool for genome editing in several living organisms. GE has revolutionized the field of agriculture by improving biotic and abiotic stresses and yield improvement. GE technologies were developed fast lately to avoid the obstacles that face GM crops. GE technology, depending on site directed nuclease (SDN), is divided into three categories according to the modification methods. Developing transgenic-free edited plants without introducing foreign DNA meet the acceptance and regulatory ratification of several countries. There are several ongoing efforts from different countries that are rapidly expanding to adopt the current technological innovations. This review summarizes the different GE technologies and their application as a way to help in ending hunger.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"12 2","pages":"601-615"},"PeriodicalIF":3.9,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9208631/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39900643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ruth Mbabazi, Muffy Koch, Karim Maredia, Joseph Guenthner
{"title":"Crop Biotechnology and Product Stewardship.","authors":"Ruth Mbabazi, Muffy Koch, Karim Maredia, Joseph Guenthner","doi":"10.1080/21645698.2020.1822133","DOIUrl":"https://doi.org/10.1080/21645698.2020.1822133","url":null,"abstract":"<p><p>Agricultural biotechnology is enhancing agricultural productivity, food security, and livelihoods globally. Some developing countries have established functional biosafety regulatory systems and have commercialized genetically modified (GM) crops. Release of GM crops requires enhanced capacity for regulatory compliance and product stewardship to help ensure sustainable use of biotechnology products. We conducted a survey of 66 stakeholders, mostly from Africa and Asia, in two-week international agricultural biotechnology short courses. Respondents showed knowledge of biotechnology benefits and expressed potential barriers to commercialization. They identified 16 crops in the \"pipeline for commercialization.\" Stakeholders also shared ideas about how to build capacity for product stewardship. Product stewardship is a concept which requires each person in the product life cycle - innovators, scientists, and technology users, to share responsibility. This paper focuses on adoption of product stewardship for post-release management of GM crops which encompasses trait performance, resistance management, integrated pest management (IPM), good agricultural practices, high-quality seeds and planting material, intellectual property management, labeling, identity preservation, consumer acceptance, and effective marketing.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"12 1","pages":"106-114"},"PeriodicalIF":3.9,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21645698.2020.1822133","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38508633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The influence of consumers' knowledge on their responses to genetically modified foods.","authors":"Hyesun Hwang, Su-Jung Nam","doi":"10.1080/21645698.2020.1840911","DOIUrl":"https://doi.org/10.1080/21645698.2020.1840911","url":null,"abstract":"<p><p>This study examined the influence of consumers' knowledge on their perceptions and purchase intentions toward genetically modified foods, and the implications of these consumer responses for sustainable development in the food industry. This study distinguished between objective and subjective knowledge and identified how an imbalance between the two knowledge types influenced consumers' attitudes and purchase intentions toward genetically modified foods. Results of a multinomial regression analysis showed that consumers with higher levels of education, income, and food involvement and more exposure to negative information about genetically modified foods tended to overestimate their actual knowledge level. The overestimation group showed a higher risk perception, lower benefit perception, and lower intention to purchase genetically modified foods than other participants. Consumers with less education and higher income were more likely to underestimate their knowledge.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"12 1","pages":"146-157"},"PeriodicalIF":3.9,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21645698.2020.1840911","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38565044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Coexistence of genetically modified seed production and organic farming in Chile.","authors":"M A Sánchez, H Campos","doi":"10.1080/21645698.2021.2001242","DOIUrl":"https://doi.org/10.1080/21645698.2021.2001242","url":null,"abstract":"<p><p>The seed industry in Chile has thrived since the implementation of a stringent, voluntarily self-imposed coexistence strategy between genetically modified organisms (GMOs) and non-GMO seed activities. GMO varieties of maize, soybean, and canola represent the vast majority of biotech seeds produced in Chile. Chile's exports of genetically modified (GM) seeds and organically grown food products (which excludes GM seeds and materials) continue to expand. Organic Chilean farmers predominantly produce and export fruits such as blueberries, wine grapes, and apples. Under normal agricultural conditions, the inadvertent presence of GMOs in non-GMO or organic crops cannot be ruled out. Producers of organic foods are required to implement stringent measures to minimize contact with any non-organic crop, regardless of whether these crops are GM. Only very small amounts of organic maize, soybean, and canola - if any - have been produced in Chile in recent years. Given the characteristics and nature of Chile's agriculture, the direct impact of the GM seed industry on organic farming in Chile is likely to be negligible. The Chilean experience with coexistence between GM seed and organic industries may inform other countries interested in providing its farmers with alternative agricultural production systems.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"12 1","pages":"509-519"},"PeriodicalIF":3.9,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9208620/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39781847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jennifer A Anderson, Rod A Herman, Anne Carlson, Carey Mathesius, Carl Maxwell, Henry Mirsky, Jason Roper, Brenda Smith, Carl Walker, Jingrui Wu
{"title":"Hypothesis-based food, feed, and environmental safety assessment of GM crops: A case study using maize event DP-202216-6.","authors":"Jennifer A Anderson, Rod A Herman, Anne Carlson, Carey Mathesius, Carl Maxwell, Henry Mirsky, Jason Roper, Brenda Smith, Carl Walker, Jingrui Wu","doi":"10.1080/21645698.2020.1869492","DOIUrl":"https://doi.org/10.1080/21645698.2020.1869492","url":null,"abstract":"<p><p>Event DP-2Ø2216-6 (referred to as DP202216 maize) was genetically modified to increase and extend the expression of the introduced <i>zmm28</i> gene relative to endogenous <i>zmm28</i> gene expression, resulting in plants with enhanced grain yield potential. The <i>zmm28</i> gene expresses the ZMM28 protein, a MADS-box transcription factor. The safety assessment of DP202216 maize included an assessment of the potential hazard of the ZMM28 protein, as well as an assessment of potential unintended effects of the genetic insertion on agronomics, composition, and nutrition. The history of safe use (HOSU) of the ZMM28 protein was evaluated and a bioinformatics approach was used to compare the deduced amino acid sequence of the ZMM28 protein to databases of known allergens and toxins. Based on HOSU and the bioinformatics assessment, the ZMM28 protein was determined to be unlikely to be either allergenic or toxic to humans. The composition of DP202216 maize forage and grain was comparable to non-modified forage and grain, with no unintended effects on nutrition or food and feed safety. Additionally, feeding studies with broiler chickens and rats demonstrated a low likelihood of unintentional alterations in nutrition and low potential for adverse effects. Furthermore, the agronomics observed for DP202216 maize and non-modified maize were comparable, indicating that the likelihood of increased weediness or invasiveness of DP202216 maize in the environment is low. This comprehensive review serves as a reference for regulatory agencies and decision-makers in countries where authorization of DP202216 maize will be pursued, and for others interested in food, feed, and environmental safety.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"12 1","pages":"282-291"},"PeriodicalIF":3.9,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21645698.2020.1869492","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38842069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H Wagaba, P Kuria, P Wangari, J Aleu, H Obiero, G Beyene, T Alicai, A Bua, W Esuma, E Nuwamanya, S Gichuki, D Miano, P Raymond, A Kiggundu, N Taylor, B M Zawedde, C Taracha, D J MacKenzie
{"title":"Comparative compositional analysis of cassava brown streak disease resistant 4046 cassava and its non-transgenic parental cultivar.","authors":"H Wagaba, P Kuria, P Wangari, J Aleu, H Obiero, G Beyene, T Alicai, A Bua, W Esuma, E Nuwamanya, S Gichuki, D Miano, P Raymond, A Kiggundu, N Taylor, B M Zawedde, C Taracha, D J MacKenzie","doi":"10.1080/21645698.2020.1836924","DOIUrl":"https://doi.org/10.1080/21645698.2020.1836924","url":null,"abstract":"<p><p>Compositional analysis is an important component of an integrated comparative approach to assessing the food and feed safety of new crops developed using biotechnology. As part of the safety assessment of cassava brown streak disease resistant 4046 cassava, a comprehensive assessment of proximates, minerals, amino acids, fatty acids, vitamins, anti-nutrients, and secondary metabolites was performed on leaf and storage root samples of 4046 cassava and its non-transgenic parental control, TME 204, collected from confined field trials in Kenya and Uganda over two successive cropping cycles. Among the 100 compositional components that were assessed in samples of 4046 and control TME 204 cassava roots (47 components) and leaves (53 components), there were no nutritionally relevant differences noted. Although there were statistically significant differences between the transgenic and control samples for some parameters, in most cases the magnitudes of these differences were small ( <math><mo><</mo></math> 20%), and in every case where comparative literature data were available, the mean values for 4046 and control cassava samples were within the range of normal variation reported for the compositional component in question. Overall, no consistent patterns emerged to suggest that biologically meaningful adverse changes in the composition or nutritive value of the leaves or storage roots occurred as an unintended or unexpected consequence of the genetic modification resulting in 4046 cassava. The data presented here provide convincing evidence of the safety of 4046 cassava with respect to its biochemical composition for food and feed, and it could be considered as safe as its non-transgenic control.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"12 1","pages":"158-169"},"PeriodicalIF":3.9,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21645698.2020.1836924","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38670137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Sufyan Tahir, Ayesha Latif, Samina Bashir, Mohsin Shad, Muhammad Azmat Ullah Khan, Ambreen Gul, Naila Shahid, Tayyab Husnain, Abdul Qayyum Rao, Ahmed Ali Shahid
{"title":"Transformation and evaluation of Broad-Spectrum insect and weedicide resistant genes in Gossypium arboreum (Desi Cotton).","authors":"Muhammad Sufyan Tahir, Ayesha Latif, Samina Bashir, Mohsin Shad, Muhammad Azmat Ullah Khan, Ambreen Gul, Naila Shahid, Tayyab Husnain, Abdul Qayyum Rao, Ahmed Ali Shahid","doi":"10.1080/21645698.2021.1885288","DOIUrl":"https://doi.org/10.1080/21645698.2021.1885288","url":null,"abstract":"<p><p><i>Gossypium arboreum</i> (Desi Cotton) holds a special place in cotton industry because of its inherent ability to withstand drought, salinity, and remarkable resistance to sucking pests and cotton leaf curl virus. However, it suffers yield losses due to weeds and bollworm infestation. Genetic modification of <i>G. arboreum</i> variety FBD-1 was attempted in the current study to combat insect and weedicide resistance by incorporating <i>cry1Ac, cry2A</i> and <i>cp4-EPSPS</i> genes under control of 35S promoter in two different cassettes using kanamycin and GUS as markers through <i>Agrobacterium</i>-mediated shoot apex cut method of cotton transformation. The efficiency of transformation was found to be 1.57%. Amplification of 1700 bp for <i>cry1Ac</i>, 167 bp for <i>cry2A</i> and 111 bp for <i>cp4-EPSPS</i> confirmed the presence of transgenes in cotton plants. The maximum mRNA expression of <i>cry1Ac</i> and <i>cp4-EPSPS</i> was observed in transgenic cotton line L3 while minimum in transgenic cotton line L1. The maximum protein concentrations of Cry1Ac, Cry2A and Cp4-EPSPS of 3.534 µg g<sup>-1</sup>, 2.534 µg g<sup>-1</sup> and 3.58 µg-g<sup>-1</sup> respectively were observed for transgenic cotton line L3 as compared to control cotton line. On leaf-feed-based insect bioassay, almost 99% mortality was observed for <i>Helicoverpa armigera</i> on the transgenic cotton plant (L3). It completely survived the 1900 ml hectare<sup>-1</sup> glyphosate spray assay as compared to non-transgenic cotton plants. The necrotic spots appeared on the third day, leading to the complete death of control plants on the fifth day of assay. The successful multiple gene-stacking in <i>G. arboreum</i> FBD-1 variety could be further used for qualitative improvement of cotton fiber through plant breeding techniques.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"12 1","pages":"292-302"},"PeriodicalIF":3.9,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21645698.2021.1885288","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25425843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integration of mRNA and miRNA profiling reveals the heterosis of three hybrid combinations of <i>Capsicum annuum</i> varieties.","authors":"Sha Yang, Zhuqing Zhang, Wenchao Chen, Xuefeng Li, Shudong Zhou, Chengliang Liang, Xin Li, Bozhi Yang, Xuexiao Zou, Feng Liu, Lijun Ou, Yanqing Ma","doi":"10.1080/21645698.2020.1852064","DOIUrl":"https://doi.org/10.1080/21645698.2020.1852064","url":null,"abstract":"<p><p><i>Capsicum annuum</i> is also known as chili which is one of the most important vegetable crops grown in the world. Breeding new varieties with heterosis could improve the quality of pepper, increase yield, growth potential, disease resistance, adaptability, and seed viability. To investigate the heterosis among three cross combinations of different parents, the mRNA-miRNA integrated analysis was performed. A total number of 22,659,009 to 36,423,818 clean data were generated from mRNA-seq with 81 libraries, and the unique mapped reads were from 35,495,567 (86.81%) to 46,466,622 (88.95%). The plant-hormone signal transduction pathway (40 genes) was detected with a higher DEG number. The <i>SAUR32L, GID1, PYR1, EIN2. ERF1, PR1, JAR1-like, IAA</i> from this pathway play a key role in plant development. From the miRNA-seq, the number of clean reads was ranging from 12,132,221 to 25,632,680. A total of 220 miRNAs were predicted in this study, and all of them were identified as novel miRNA. The top three candidate KEGG pathways of miRNA were ribosome signaling pathway (13 miRNAs), spliceosome pathway (13 miRNAs), and plant hormone signal transduction pathways (10 miRNAs). With the mRNA and miRNA integrated analysis, we found some key genes were regulated by some miRNAs. Among them, the scarecrow-like 6 protein can be up or down regulated by mir8, mir120, mir184, mir_214, mir125, and mir130. The function of Della protein was regulated by mir24, mir74, mir94, mir139, and mir190. This study contributes to understanding how heterosis regulates the traits, such as crop production, fruit weight, and fruit length.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"12 1","pages":"224-241"},"PeriodicalIF":3.9,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21645698.2020.1852064","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38793169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Reda E A Moghaieb, Dalia S Ahmed, Ahmed Gaber, Abdelhadi A Abdelhadi
{"title":"Overexpression of bacterial <i>katE</i> gene improves the resistance of modified tomato plant against <i>Fusarium oxysporum</i> f. sp. <i>lycopersici</i>.","authors":"Reda E A Moghaieb, Dalia S Ahmed, Ahmed Gaber, Abdelhadi A Abdelhadi","doi":"10.1080/21645698.2021.1903374","DOIUrl":"https://doi.org/10.1080/21645698.2021.1903374","url":null,"abstract":"<p><p>Tomato (<i>Solanum lycopersicum</i> L.) yield is severely affected by <i>Fusarium</i> fungal disease. To improve the resistance of tomato against Fusarium oxysporum f. sp. lycopersici (FOL), Escherichia coli katE gene was transformed into two tomato cultivars, namely Castle Rock and Super strain B, via <i>Agrobacterium tumefaciens</i>; the transformation efficiency was 5.6% and 3.5%, respectively. The integration of the <i>katE</i> gene into T<sub>0</sub>, T<sub>1</sub>, and T<sub>2</sub> transgenic tomato lines was confirmed using PCR. In addition, DNA dot blot technique confirmed the integration of the <i>katE</i> gene into T<sub>2</sub> transgenic tomato lines. The RT-PCR analysis confirmed that the <i>katE</i> gene could be expressed normally in the T<sub>2</sub> modified lines. Under artificial infection with FOL, the non-modified plants exhibited more severe fungal disease symptoms than those observed in <i>katE</i> overexpression (OE) lines. Our analysis showed that the levels of three defense enzymes, namely superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), were increased during transgenic T<sub>2</sub> generation pre-treated with FOL. The bioassay of modified lines revealed that an average of 52.56% of the modified Castle Rock cultivar and 50.28% of the modified Super Strain B cultivar showed resistance under <i>Fusarium</i> infection. These results clearly indicate that the modified tomato plants, in which the <i>katE</i> gene was overexpressed, became more resistant to the infection by FOL than the wild-type plants. Our study has proven that the overexpression of the <i>E. coli katE</i> gene in the OE lines could be utilized to develop and improve the resistance against fungal diseases in the modified crops.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"12 1","pages":"315-327"},"PeriodicalIF":3.9,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21645698.2021.1903374","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25544484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Resveratrol-enriched rice identical to original Dongjin rice variety with respect to major agronomic traits in different cultivation years and regions.","authors":"Vipada Kantayos, Woon-Chul Shin, Jin-Suk Kim, Seung-Ho Jeon, Eui-Shik Rha, So-Hyeon Baek","doi":"10.1080/21645698.2021.1979368","DOIUrl":"10.1080/21645698.2021.1979368","url":null,"abstract":"<p><p>Resveratrol is synthesized by the catalysis of resveratrol synthases (RS) in a limited number of higher plants. Resveratrol shows potential health-promoting properties, including as an antioxidant and in preventing cardiovascular diseases. Recently, resveratrol-enriched rice has been produced as a novel source of resveratrol. This study aimed to investigate the major agronomic characteristics of resveratrol-enriched rice, Iksan526 (I526) and compared them with those of a nontransgenic and commercial rice variety, Dongjin (DJ). Transgene (RS) integration was confirmed using Southern blot analysis, and homologous recombination was achieved after digestion with the SacI restriction enzyme. The phenotypic traits of I526 grown in Iksan were similar to those grown in Milyang but not similar to those grown in Suwon. In Suwon, I526 had slightly earlier heading dates [i.e., number of days from sowing to heading) and shorter culm lengths. When I526 was treated with 0.4% Basta in the seedling stage, no significant difference was observed among all the agronomic traits compared with nontreated I526; particularly, the culm length, panicle length, number of panicles per hill, 1,000 grain weight of brown rice, and brown rice yield of the Basta-treated rice were similar to those of the nontreated I526, regardless of their cultivation region. The resveratrol content of I526 grown in Suwon and Milyang was increased by 18% and 37%, respectively, than that of I526 grown in the Iksan area. Therefore, DJ and I526 are not significantly different in terms of major agronomic traits depending on variety/year and variety/cultivation region. The results indicated that I526 has the potential to become a commercialized variety in the near future.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"12 1","pages":"449-458"},"PeriodicalIF":3.9,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8667880/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39815135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}