Jennifer A Anderson, Rod A Herman, Anne Carlson, Carey Mathesius, Carl Maxwell, Henry Mirsky, Jason Roper, Brenda Smith, Carl Walker, Jingrui Wu
{"title":"基于假设的转基因作物食品、饲料和环境安全评价:以玉米事件DP-202216-6为例","authors":"Jennifer A Anderson, Rod A Herman, Anne Carlson, Carey Mathesius, Carl Maxwell, Henry Mirsky, Jason Roper, Brenda Smith, Carl Walker, Jingrui Wu","doi":"10.1080/21645698.2020.1869492","DOIUrl":null,"url":null,"abstract":"<p><p>Event DP-2Ø2216-6 (referred to as DP202216 maize) was genetically modified to increase and extend the expression of the introduced <i>zmm28</i> gene relative to endogenous <i>zmm28</i> gene expression, resulting in plants with enhanced grain yield potential. The <i>zmm28</i> gene expresses the ZMM28 protein, a MADS-box transcription factor. The safety assessment of DP202216 maize included an assessment of the potential hazard of the ZMM28 protein, as well as an assessment of potential unintended effects of the genetic insertion on agronomics, composition, and nutrition. The history of safe use (HOSU) of the ZMM28 protein was evaluated and a bioinformatics approach was used to compare the deduced amino acid sequence of the ZMM28 protein to databases of known allergens and toxins. Based on HOSU and the bioinformatics assessment, the ZMM28 protein was determined to be unlikely to be either allergenic or toxic to humans. The composition of DP202216 maize forage and grain was comparable to non-modified forage and grain, with no unintended effects on nutrition or food and feed safety. Additionally, feeding studies with broiler chickens and rats demonstrated a low likelihood of unintentional alterations in nutrition and low potential for adverse effects. Furthermore, the agronomics observed for DP202216 maize and non-modified maize were comparable, indicating that the likelihood of increased weediness or invasiveness of DP202216 maize in the environment is low. This comprehensive review serves as a reference for regulatory agencies and decision-makers in countries where authorization of DP202216 maize will be pursued, and for others interested in food, feed, and environmental safety.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"12 1","pages":"282-291"},"PeriodicalIF":4.5000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21645698.2020.1869492","citationCount":"1","resultStr":"{\"title\":\"Hypothesis-based food, feed, and environmental safety assessment of GM crops: A case study using maize event DP-202216-6.\",\"authors\":\"Jennifer A Anderson, Rod A Herman, Anne Carlson, Carey Mathesius, Carl Maxwell, Henry Mirsky, Jason Roper, Brenda Smith, Carl Walker, Jingrui Wu\",\"doi\":\"10.1080/21645698.2020.1869492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Event DP-2Ø2216-6 (referred to as DP202216 maize) was genetically modified to increase and extend the expression of the introduced <i>zmm28</i> gene relative to endogenous <i>zmm28</i> gene expression, resulting in plants with enhanced grain yield potential. The <i>zmm28</i> gene expresses the ZMM28 protein, a MADS-box transcription factor. The safety assessment of DP202216 maize included an assessment of the potential hazard of the ZMM28 protein, as well as an assessment of potential unintended effects of the genetic insertion on agronomics, composition, and nutrition. The history of safe use (HOSU) of the ZMM28 protein was evaluated and a bioinformatics approach was used to compare the deduced amino acid sequence of the ZMM28 protein to databases of known allergens and toxins. Based on HOSU and the bioinformatics assessment, the ZMM28 protein was determined to be unlikely to be either allergenic or toxic to humans. The composition of DP202216 maize forage and grain was comparable to non-modified forage and grain, with no unintended effects on nutrition or food and feed safety. Additionally, feeding studies with broiler chickens and rats demonstrated a low likelihood of unintentional alterations in nutrition and low potential for adverse effects. Furthermore, the agronomics observed for DP202216 maize and non-modified maize were comparable, indicating that the likelihood of increased weediness or invasiveness of DP202216 maize in the environment is low. This comprehensive review serves as a reference for regulatory agencies and decision-makers in countries where authorization of DP202216 maize will be pursued, and for others interested in food, feed, and environmental safety.</p>\",\"PeriodicalId\":54282,\"journal\":{\"name\":\"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain\",\"volume\":\"12 1\",\"pages\":\"282-291\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2021-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/21645698.2020.1869492\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/21645698.2020.1869492\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21645698.2020.1869492","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Hypothesis-based food, feed, and environmental safety assessment of GM crops: A case study using maize event DP-202216-6.
Event DP-2Ø2216-6 (referred to as DP202216 maize) was genetically modified to increase and extend the expression of the introduced zmm28 gene relative to endogenous zmm28 gene expression, resulting in plants with enhanced grain yield potential. The zmm28 gene expresses the ZMM28 protein, a MADS-box transcription factor. The safety assessment of DP202216 maize included an assessment of the potential hazard of the ZMM28 protein, as well as an assessment of potential unintended effects of the genetic insertion on agronomics, composition, and nutrition. The history of safe use (HOSU) of the ZMM28 protein was evaluated and a bioinformatics approach was used to compare the deduced amino acid sequence of the ZMM28 protein to databases of known allergens and toxins. Based on HOSU and the bioinformatics assessment, the ZMM28 protein was determined to be unlikely to be either allergenic or toxic to humans. The composition of DP202216 maize forage and grain was comparable to non-modified forage and grain, with no unintended effects on nutrition or food and feed safety. Additionally, feeding studies with broiler chickens and rats demonstrated a low likelihood of unintentional alterations in nutrition and low potential for adverse effects. Furthermore, the agronomics observed for DP202216 maize and non-modified maize were comparable, indicating that the likelihood of increased weediness or invasiveness of DP202216 maize in the environment is low. This comprehensive review serves as a reference for regulatory agencies and decision-makers in countries where authorization of DP202216 maize will be pursued, and for others interested in food, feed, and environmental safety.
期刊介绍:
GM Crops & Food - Biotechnology in Agriculture and the Food Chain aims to publish high quality research papers, reviews, and commentaries on a wide range of topics involving genetically modified (GM) crops in agriculture and genetically modified food. The journal provides a platform for research papers addressing fundamental questions in the development, testing, and application of transgenic crops. The journal further covers topics relating to socio-economic issues, commercialization, trade and societal issues. GM Crops & Food aims to provide an international forum on all issues related to GM crops, especially toward meaningful communication between scientists and policy-makers.
GM Crops & Food will publish relevant and high-impact original research with a special focus on novelty-driven studies with the potential for application. The journal also publishes authoritative review articles on current research and policy initiatives, and commentary on broad perspectives regarding genetically modified crops. The journal serves a wide readership including scientists, breeders, and policy-makers, as well as a wider community of readers (educators, policy makers, scholars, science writers and students) interested in agriculture, medicine, biotechnology, investment, and technology transfer.
Topics covered include, but are not limited to:
• Production and analysis of transgenic crops
• Gene insertion studies
• Gene silencing
• Factors affecting gene expression
• Post-translational analysis
• Molecular farming
• Field trial analysis
• Commercialization of modified crops
• Safety and regulatory affairs
BIOLOGICAL SCIENCE AND TECHNOLOGY
• Biofuels
• Data from field trials
• Development of transformation technology
• Elimination of pollutants (Bioremediation)
• Gene silencing mechanisms
• Genome Editing
• Herbicide resistance
• Molecular farming
• Pest resistance
• Plant reproduction (e.g., male sterility, hybrid breeding, apomixis)
• Plants with altered composition
• Tolerance to abiotic stress
• Transgenesis in agriculture
• Biofortification and nutrients improvement
• Genomic, proteomic and bioinformatics methods used for developing GM cops
ECONOMIC, POLITICAL AND SOCIAL ISSUES
• Commercialization
• Consumer attitudes
• International bodies
• National and local government policies
• Public perception, intellectual property, education, (bio)ethical issues
• Regulation, environmental impact and containment
• Socio-economic impact
• Food safety and security
• Risk assessments