Aya Anis , Ahmed M. Mostafa , Mariam S. Kerema , Nadia M. Hamdy , Ahmed S. Sultan
{"title":"In silico and cheminformatics prediction with experimental validation of an adipogenesis cocktail, sorafenib with rosiglitazone for HCC dedifferentiation","authors":"Aya Anis , Ahmed M. Mostafa , Mariam S. Kerema , Nadia M. Hamdy , Ahmed S. Sultan","doi":"10.1016/j.jgeb.2024.100429","DOIUrl":"10.1016/j.jgeb.2024.100429","url":null,"abstract":"<div><h3>Purpose</h3><div>Hepatocellular carcinoma (HCC) resistance to sorafenib treatment and other treatment strategies causes a higher mortality rate in patients diagnosed with HCC.</div><div>Research question.</div><div>HCC often develops resistance to sorafenib treatment and other therapies, leading to increased mortality rates in diagnosed patients. Herein, we propose a combined therapeutic approach using rosiglitazone, a key factor in cellular differentiation, along with adipogenesis inducers such as dexamethasone, IBMX, and insulin. Additionally, we included sorafenib, a primary drug for liver cancer treatment, in this combination cocktail and carried out the differentiation process in the presence of sorafenib.</div></div><div><h3>Results</h3><div>Our study demonstrates that this combination induces the formation of adipocytes from HCC cells over several days under specific conditions and steps. Conclusion. findings suggest that supplementing sorafenib with rosiglitazone and adipogenesis inducers may potentially transform HCC cells into adipocyte-like cells. Fat could be “the good” in the story of liver cancer alleviation, demonstrating the role of rosiglitazone.</div></div>","PeriodicalId":53463,"journal":{"name":"Journal of Genetic Engineering and Biotechnology","volume":"22 4","pages":"Article 100429"},"PeriodicalIF":3.5,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yining Liu , Lingchao Kong , Siyi Li , Lingjun Nie , Junjie Gao , Shuaitong Li , Yuan Pan , Qingkun Liu , Zeying Wang
{"title":"Correlation and regression analysis of GH and IGF-1 genes in Liaoning cashmere goats with body size and other production performance","authors":"Yining Liu , Lingchao Kong , Siyi Li , Lingjun Nie , Junjie Gao , Shuaitong Li , Yuan Pan , Qingkun Liu , Zeying Wang","doi":"10.1016/j.jgeb.2024.100440","DOIUrl":"10.1016/j.jgeb.2024.100440","url":null,"abstract":"<div><div>Liaoning cashmere goat is an important livestock breed in the world. Its economic value is not only reflected in the production of high-quality cashmere, but also its meat production performance is increasingly attracting attention. In order to more comprehensively explore the economic traits of Liaoning cashmere goats, we mainly carry out research on increasing the body size and meat production performance of Liaoning cashmere goats. In the early stage, through multi-omics joint analysis of muscle tissues at different parts and different developmental stages, the important functional genes <em>GH</em> and <em>IGF-1</em> for growth and development were determined. Then, genotyping of DNA in the experimental population and correlation analysis between SNP and production performance were carried out by PCR-seq. One SNP site G350A was detected in the <em>GH</em> gene. Only one genotype AG was identified in rams. In ewes, the GG genotype is the dominant genotype for body size and production performance, and the AG genotype is the dominant genotype for slaughter production performance. One SNP site C5464T was detected in the <em>IGF-1</em> gene. In rams, the TT genotype is the dominant genotype for body size and slaughter production performance. In ewes, the CT genotype is the dominant genotype for body size and slaughter production performance. The dominant haplotype combination for body size and slaughter production performance of rams is AGTT. The dominant haplotype combination for body size production performance of ewes is GGCT, and the dominant haplotype combination for slaughter performance is AGCT. This study provides a theoretical basis for genetic improvement and breeding programs of Liaoning cashmere goats.</div></div>","PeriodicalId":53463,"journal":{"name":"Journal of Genetic Engineering and Biotechnology","volume":"22 4","pages":"Article 100440"},"PeriodicalIF":3.5,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Genomic insights into Duchene muscular dystrophy: Analysis of 1250 patients reveals 30% novel genetic patterns and 6 novel variants","authors":"Khalda Amr , Nagia Fahmy , Ghada El-Kamah","doi":"10.1016/j.jgeb.2024.100436","DOIUrl":"10.1016/j.jgeb.2024.100436","url":null,"abstract":"<div><div>Duchenne muscular dystrophy (DMD/BMD) is the most common type of muscular dystrophy, together with Becker muscular dystrophy represent more than half of all cases. DMD is a single-gene, X-linked recessive disorder that predominantly affects boys, causing progressive muscle deterioration and eventually leading to fatal cardiopulmonary complications. This study aimed to implement a cost-effective molecular diagnostic method using the SALSA MLPA Kit (probe mixes 034 and 035) to screen a large group of Egyptian DMD patients. The study included 1250 clinically diagnosed DMD males, following complete family history, pedigree analyses and an accurate clinical examination and laboratory investigations mainly considering high levels of creatine phosphokinase (>2000 U/L). We also analysed the carrier status of 100 mothers of 100 probands to gauge the inherited mutation through their patients with familial disease. The negative results of MLPA were further analysed with NGS for ten patients and the results were validated for novel missense mutations, phenotype-genotype correlations were analysed using PolyPhen2 and mutation taster.</div><div><strong>Results</strong> SALSA MLPA analysis confirmed the diagnoses in 733/1250 (58.6 %) DMD patients and the remaining of 517/1250 (41.4%) were negative. DMD patients having large deletions were 632/1250 (50.6%) while duplications occurred in 101/1250 (8%). The most common single exon deletion was 45 (50/632, 7.9%). In addition, 163 different deletion and duplication patterns were characterized among positive MLPA analyses. 30% of our studied cohort exhibited new patterns of rearragements in addition to seven cases of double deletion and duplication rearrangements identified, within nine patients. Using NGS, for small mutations detection, revealed six novel and three previously reported mutations among screened ten patients.</div><div><strong>In conclusion</strong>, our findings expand the spectrum of known DMD mutations by offering an effective diagnostic method and identifying novel point mutations through NGS analysis. We recommend using NGS to uncover uncharacterized mutations in patients who test negative with MLPA, which could contribute to the treatment of DMD.</div></div>","PeriodicalId":53463,"journal":{"name":"Journal of Genetic Engineering and Biotechnology","volume":"22 4","pages":"Article 100436"},"PeriodicalIF":3.5,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142658979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rehab Mosaad , Ghada El-Kamah , Maha Eid , Khalda Amr
{"title":"DNA phenotyping and mapping intragenic deletion mutations in Fanconi anemia: Patterns and diagnostic inferences","authors":"Rehab Mosaad , Ghada El-Kamah , Maha Eid , Khalda Amr","doi":"10.1016/j.jgeb.2024.100435","DOIUrl":"10.1016/j.jgeb.2024.100435","url":null,"abstract":"<div><h3>Background</h3><div>Fanconi anemia is a genetically heterogeneous recessive disorder distinguished by cytogenetic instability, hypersensitivity to DNA crosslinking agents, increased chromosomal breakage, and disturbed DNA repair. To date, Fanconi anemia complementation group (FANC) includes 23 FANC genes identified of which, <em>FANCA</em> gene is the most commonly mutated. The mutation spectrum of the <em>FANCA</em> gene is highly heterogeneous with large intragenic deletions due to Alu elements-mediated recombination.</div><div>The study aimed to identify different deletion mutations on <em>FANCA</em> gene in Egyptian Fanconi anemia patients by multiplex ligation-dependent probe amplification (MLPA) technique to define the spectrum of FA molecular pathology as a step for disease control. The study included 80 FA patients (36 females and 44 males) whose ages ranged from 4 months to 17 years descending from unrelated consanguineous families referred to the Hereditary Blood Disorders Clinic, National Research Centre (NRC), Egypt. Patients were diagnosed with classical clinical presentation of FA and were confirmed by chromosomal breakage using Diepoxybutane (DEB).</div></div><div><h3>Results</h3><div>The common clinical presentation in our FA patients were the presence of café au lait spots with hyperpigmentation in 65/80 (81%) followed by skeletal defects in 40/80 (50%). MLPA revealed a total of five different intragenic homozygous deletions of <em>FANCA</em> gene in 16 /80 (20%) patients, among them two deletion patterns were novel.</div></div><div><h3>Conclusion</h3><div>Molecular analysis using MLPA could detect pathogenic mutations in 20% of FA patients, our study generated considerable data on causative mutations that was used for genetic counseling and prenatal diagnosis.</div></div>","PeriodicalId":53463,"journal":{"name":"Journal of Genetic Engineering and Biotechnology","volume":"22 4","pages":"Article 100435"},"PeriodicalIF":3.5,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142658980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Weihang Hong , Hua Ma , Lingjun Nie , Shuaitong Li , Lingchao Kong , Ran Duan , Qingyu Yuan , Qiying Zhan , Jinghan Wang , Yuyan Cong , Zeying Wang
{"title":"Correlation and regression analysis of KRT35 and TCHHL1 functional genes for cashmere fineness in Liaoning cashmere goats","authors":"Weihang Hong , Hua Ma , Lingjun Nie , Shuaitong Li , Lingchao Kong , Ran Duan , Qingyu Yuan , Qiying Zhan , Jinghan Wang , Yuyan Cong , Zeying Wang","doi":"10.1016/j.jgeb.2024.100434","DOIUrl":"10.1016/j.jgeb.2024.100434","url":null,"abstract":"<div><div>Liaoning cashmere goat (LCG) is the world’s highest cashmere producing white cashmere goat. It has the characteristics of long cashmere fiber, high net cashmere rate, moderate cashmere fineness, white cashmere, strong size, strong adaptability, stable genetic performance, and good effect in improving middle and low production cashmere goat. It is known as “National treasure of China”. With LCG as the paternal parent, five new local breeds have been cultivated, which has made outstanding contributions to the improvement and breeding of Chinese cashmere goat breeds. LCG cashmere has moderate fineness (the average fineness of cashmere of LCG population is about 16 µm).However, as a slightly coarse textile raw material, we hope to identify the key genes regulating cashmere fineness through PCR-seq and MLR, in order to reduce cashmere fineness.We collected and extracted DNA from the blood of Liaoning cashmere goats, designed primers, PCR amplification, and Statistical analysis. It was found that the the AA genotype of the G3667A locus of the <em>KRT35</em> gene, CT genotype of the T615C locus of the <em>TCHHL1</em> gene in bucks and the CC genotype of does, as well as CT genotype of the T615C locus of the <em>TCHHL1</em> gene in bucks and the CC genotype of does are dominant genotypes in cashmere fineness. The dominant haplotype combination with multiple factors and effects of cashmere fineness has been determined to be CTGG in bucks and TTGG in does. There was a significant linear regression relationship between the fineness of cashmere in LCG and the cashmere rate and cashmere quantity. There is a significant linear regression relationship between the fineness of LCG and the cashmere rate and cashmere quantity. CF = 0.001SQ-0.71CY + 20.784 (R<sup>2</sup> = 0.818) in buck and CF = 0.001SQ-0.767CY + 22.009 (R<sup>2</sup> = 0.863) in doe. Conclusion: The AA genotype of <em>KRT35</em> gene, CT genotype of <em>TCHHL1</em> gene in bucks and CC genotype of does can be used as molecular markers to assist in the selection of cashmere fineness.</div></div>","PeriodicalId":53463,"journal":{"name":"Journal of Genetic Engineering and Biotechnology","volume":"22 4","pages":"Article 100434"},"PeriodicalIF":3.5,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sarah Alrajeh , Muhammad Naveed Khan , Aidhya Irhash Putra , Dhafar N. Al-ugaili , Khalid H. Alobaidi , Othman Al Dossary , Jameel R. Al-Obaidi , Azi Azeyanty Jamaludin , Mohammed Yahya Allawi , Bilal Salim Al-Taie , Norafizah Abdul Rahman , Norasfaliza Rahmad
{"title":"Mapping proteomic response to salinity stress tolerance in oil crops: Towrads enhanced plant resilience","authors":"Sarah Alrajeh , Muhammad Naveed Khan , Aidhya Irhash Putra , Dhafar N. Al-ugaili , Khalid H. Alobaidi , Othman Al Dossary , Jameel R. Al-Obaidi , Azi Azeyanty Jamaludin , Mohammed Yahya Allawi , Bilal Salim Al-Taie , Norafizah Abdul Rahman , Norasfaliza Rahmad","doi":"10.1016/j.jgeb.2024.100432","DOIUrl":"10.1016/j.jgeb.2024.100432","url":null,"abstract":"<div><div>Exposure to saline environments significantly hampers the growth and productivity of oil crops, harmfully affecting their nutritional quality and suitability for biofuel production. This presents a critical challenge, as understanding salt tolerance mechanisms in crops is key to improving their performance in coastal and high-salinity regions. Our content might be read more properly: This review assembles current knowledge on protein-level changes related to salinity resistance in oil crops. From an extensive analysis of proteomic research, featured here are key genes and cellular pathways which react to salt stress. The literature evinces that cutting-edge proteomic approaches − such as 2D-DIGE, IF-MS/MS, and iTRAQ − have been required to reveal protein expression patterns in oil crops under salt conditions. These studies consistently uncover dramatic shifts in protein abundance associated with important physiological activities including antioxidant defence, stress-related signalling pathways, ion homeostasis, and osmotic regulation. Notably, proteins like ion channels (SOS1, NHX), osmolytes (proline, glycine betaine), antioxidant enzymes (SOD, CAT), and stress-related proteins (HSPs, LEA) play central roles in maintaining cellular balance and reducing oxidative stress. These findings underline the complex regulatory networks that govern oil crop salt tolerance. The application of this proteomic information can inform breeding and genetic engineering strategies to enhance salt resistance. Future research should aim to integrate multiple omics data to gain a comprehensive view of salinity responses and identify potential markers for crop improvement.</div></div>","PeriodicalId":53463,"journal":{"name":"Journal of Genetic Engineering and Biotechnology","volume":"22 4","pages":"Article 100432"},"PeriodicalIF":3.5,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142553736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammad Khursheed Alam , Md. Faruk Hosen , Kiran Kumar Ganji , Kawsar Ahmed , Francis M. Bui
{"title":"Identification of key signaling pathways and novel computational drug target for oral cancer, metabolic disorders and periodontal disease","authors":"Mohammad Khursheed Alam , Md. Faruk Hosen , Kiran Kumar Ganji , Kawsar Ahmed , Francis M. Bui","doi":"10.1016/j.jgeb.2024.100431","DOIUrl":"10.1016/j.jgeb.2024.100431","url":null,"abstract":"<div><h3>Aim</h3><div>Due to conventional endocrinological methods, there is presently no shared work available, and no therapeutic options have been demonstrated in oral cancer (OC) and periodontal disease (PD), type 2 diabetes (T2D), and obese patients. The aim of this study is to determine the similar molecular pathways and potential therapeutic targets in PD, OC, T2D, and obesity that may be used to anticipate the progression of the disease.</div></div><div><h3>Methods</h3><div>Four Gene Expression Omnibus (GEO) microarray datasets (GSE29221, GSE15773, GSE16134, and GSE13601) are used for finding differentially expressed genes (DEGs) for T2D, obese, and PD patients with OC in order to explore comparable pathways and therapeutic medications. Gene ontology (GO) and pathway analysis were used to investigate the functional annotations of the genes. The hub genes were then identified using protein-protein interaction (PPI) networks, and the most significant PPI components were evaluated using a clustering approach.</div></div><div><h3>Results</h3><div>These three gene expression-based datasets yielded a total of seven common DEGs. According to the GO annotation, the majority of the DEGs were connected with the microtubule cytoskeleton structure involved in mitosis. The KEGG pathways revealed that the concordant DEGs are connected to the cell cycle and progesterone-mediated oocyte maturation. Based on topological analysis of the PPI network, major hub genes (CCNB1, BUB1, TTK, PLAT, and AHNAK) and notable modules were revealed. This work additionally identified the connection of TF genes and miRNAs with common DEGs, as well as TF activity.</div></div><div><h3>Conclusion</h3><div>Predictive drug analysis yielded concordant drug compounds involved with T2D, OC, PD, and obesity disorder, which might be beneficial for examining the diagnosis, treatment, and prognosis of metabolic disorders and Oral cancer.</div></div>","PeriodicalId":53463,"journal":{"name":"Journal of Genetic Engineering and Biotechnology","volume":"22 4","pages":"Article 100431"},"PeriodicalIF":3.5,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142526918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kailas D. Datkhile , Pratik P. Durgawale , Nilam J. Jagdale , Ashwini L. More , Satish R. Patil
{"title":"Biogenic silver nanoparticles synthesized using bracken fern inhibits cell proliferation in HCT-15 cells through induction of apoptosis pathway and overexpression of heat shock proteins","authors":"Kailas D. Datkhile , Pratik P. Durgawale , Nilam J. Jagdale , Ashwini L. More , Satish R. Patil","doi":"10.1016/j.jgeb.2024.100428","DOIUrl":"10.1016/j.jgeb.2024.100428","url":null,"abstract":"<div><h3>Background</h3><div>In recent years, biosynthesized nanoparticles has shown a promise as alternative avenue for improving the effectiveness of conventional chemotherapy. Despite, there is a significant gap in existing literature concerning the comprehensive study of biogenic silver nanoparticles derived from terrestrial fern species and their potential effects on cancer cells. This study is aiming to investigate effects of biogenic silver nanoparticles synthesized using aqueous extract of bracken fern <em>Pteridium revolutum</em> on inhibiting cell proliferation and inducing apoptosis in HCT-15 cells.</div></div><div><h3>Methods</h3><div>Biogenic silver nanoparticles synthesized using aqueous extract of <em>Pteridum revolutum</em> followed by their characterization (UV–Visible spectroscopy, TEM, XRD and FTIR). The impact on cell proliferation of HCT-15 cells was assessed by MTT assay while induction of apoptosis was demonstrated via DNA fragmentation, caspase-3 assay, cell cycle arrest, FITC V- Annexin assay and evaluation of expression of apoptotic genes using real time PCR and western blotting techniques.</div></div><div><h3>Results</h3><div>Results of UV–Vis spectrum of colloidal solution of CW-AgNPs showed surface plasmon resonance peak at 430 nm. TEM and XRD results confirmed synthesis of spherical shaped, 20–40 nm sized nanoparticles. The results elucidate cytotoxic effect of PR-AgNPs against HCT-15 cells in time and dose dependent manner with IC50 observed at 5.79 ± 0.58 µg /mL after 24 h of exposure. Furthermore, PR-AgNPs induce significant alterations in cellular morphology, elevate DNA DNA fragmentation and enhance expression of p53 and caspase-3 in HCT10 cells.</div></div><div><h3>Conclusion</h3><div>The findings from this study address the noteworthy antiproliferative effects of PR-AgNPs in cancer cells primarily mediated through activation of intrinsic apoptosis pathway by inducing p53 and caspase-3 genes.</div></div>","PeriodicalId":53463,"journal":{"name":"Journal of Genetic Engineering and Biotechnology","volume":"22 4","pages":"Article 100428"},"PeriodicalIF":3.5,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuaitong Li , Lingchao Kong , Siyi Li, Yining Liu, Yuan Pan, Qingkun Liu, Weihang Hong, Hua Ma, Qingyu Yuan, Ran Duan, Qiying Zhan, Zeying Wang
{"title":"Correlation and regression analysis of FA2H and ELOVL3 functional genes for cashmere fineness with production performance in Liaoning cashmere goat","authors":"Shuaitong Li , Lingchao Kong , Siyi Li, Yining Liu, Yuan Pan, Qingkun Liu, Weihang Hong, Hua Ma, Qingyu Yuan, Ran Duan, Qiying Zhan, Zeying Wang","doi":"10.1016/j.jgeb.2024.100430","DOIUrl":"10.1016/j.jgeb.2024.100430","url":null,"abstract":"<div><div>Liaoning cashmere goat (LCG) is characterized by the highest individual cashmere yield, but its cashmere fineness tends to be coarse. Therefore, our research primarily focuses on reducing cashmere fineness. Through lipidomics screening and identification, we identified the crucial functional genes <em>FA2H</em> and <em>ELOVL3</em> associated with cashmere fineness. Subsequently, using PCR-seq, we conducted gene typing and SNP analysis on the experimental population DNA, In the <em>FA2H</em> gene, a SNP locus T42443G was detected in LCG buck, with the TT genotype showing advantageous traits in cashmere fineness, meat quality, and body size, while the TG genotype demonstrated advantages in slaughter performance,In LCG doe, the TG genotype shows advantageous traits in cashmere fineness, milk production, and meat quality, while the TT genotype exhibits advantages in slaughter performance, lambing, and body size. In the <em>ELOVL3</em> gene, a SNP locus C2133A was identified in LCG buck, where the CC genotype was advantageous for cashmere fineness, Only CA genotype was found in slaughter and meat quality. Additionally, and the CA genotype showed superiority in body size. On LCG doe, The CC genotype was the advantageous genotype in terms of cashmere fineness, milk production, slaughter performance, and meat quality. The CA genotype was the advantageous genotype in terms of lambing and body size. The dominant genotypes identified to influence both doe cashmere fineness and slaughter performance were TT and CC. The identified dominant haplotype combination for cashmere production performance in LCG was CCTG. The dominant haplotype combination for doe slaughter performance was the CCTT haplotype combination. The dominant haplotype combination for buck slaughter performance was the CATG haplotype combination. Therefore, the TT genotype of the <em>FA2H</em> gene and the CC genotype of the <em>ELOVL3</em> gene in LCG buck, and the TG genotype of the <em>FA2H</em> gene and the CC genotype of the <em>ELOVL3</em> gene in doe can be used as molecular markers for assisted selection of cashmere fineness. CCTG haplotype combination was the superior haplotype combinations for cashmere production performance. To provide a theoretical basis for the breeding and expansion of fine-fiber type new strains of LCG.</div></div>","PeriodicalId":53463,"journal":{"name":"Journal of Genetic Engineering and Biotechnology","volume":"22 4","pages":"Article 100430"},"PeriodicalIF":3.5,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zina Alaswad , Nayera E. Attallah , Basma Aboalazm , Eman S. Elmeslhy , Asmaa S. Mekawy , Fatma A. Afify , Hesham K. Mahrous , Ashrakat Abdalla , Mai A. Rahmoon , Ahmed A. Mohamed , Ahmed H. Shata , Rana H. Mansour , Fareed Aboul-ela , Mohamed Elhadidy , Biola M. Javierre , Sherif F. El-Khamisy , Menattallah Elserafy
{"title":"Insights into the human cDNA: A descriptive study using library screening in yeast","authors":"Zina Alaswad , Nayera E. Attallah , Basma Aboalazm , Eman S. Elmeslhy , Asmaa S. Mekawy , Fatma A. Afify , Hesham K. Mahrous , Ashrakat Abdalla , Mai A. Rahmoon , Ahmed A. Mohamed , Ahmed H. Shata , Rana H. Mansour , Fareed Aboul-ela , Mohamed Elhadidy , Biola M. Javierre , Sherif F. El-Khamisy , Menattallah Elserafy","doi":"10.1016/j.jgeb.2024.100427","DOIUrl":"10.1016/j.jgeb.2024.100427","url":null,"abstract":"<div><div>The utilization of human cDNA libraries in yeast genetic screens is an approach that has been used to identify novel gene functions and/or genetic and physical interaction partners through forward genetics using yeast two-hybrid (Y2H) and classical cDNA library screens. Here, we summarize several challenges that have been observed during the implementation of human cDNA library screens in <em>Saccharomyces cerevisiae</em> (budding yeast). Upon the utilization of DNA repair deficient-yeast strains to identify novel genes that rescue the toxic effect of DNA-damage inducing drugs, we have observed a wide range of transcripts that could rescue the strains. However, after several rounds of screening, most of these hits turned out to be false positives, most likely due to spontaneous mutations in the yeast strains that arise as a rescue mechanism due to exposure to toxic DNA damage inducing-drugs.</div><div>The observed transcripts included mitochondrial hits, non-coding RNAs, truncated cDNAs, and transcription products that resulted from the internal priming of genomic regions. We have also noticed that most cDNA transcripts are not fused with the GAL4 activation domain (GAL4AD), rendering them unsuitable for Y2H screening. Consequently, we utilized Sanger sequencing to screen 282 transcripts obtained from either four different yeast screens or through direct fishing from a human kidney cDNA library. The aim was to gain insights into the different transcription products and to highlight the challenges of cDNA screening approaches in the presence of a significant number of undesired transcription products. In summary, this study describes the challenges encountering human cDNA library screening in yeast as a valuable technique that led to the identification of important molecular mechanisms. The results open research venues to further optimize the process and increase its efficiency.</div></div>","PeriodicalId":53463,"journal":{"name":"Journal of Genetic Engineering and Biotechnology","volume":"22 4","pages":"Article 100427"},"PeriodicalIF":3.5,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142526999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}