{"title":"Impact of ionizing radiation and low-energy electrons on DNA functionality: radioprotection and radiosensitization potential of natural products","authors":"Kouass Sahbani Saloua , Rayan M. Alansari","doi":"10.1016/j.jgeb.2025.100501","DOIUrl":null,"url":null,"abstract":"<div><div>Ionizing radiation (IR) is a key cancer treatment, but its DNA-damaging effects, particularly double-strand breaks (DSBs) and clustered lesions, pose challenges for therapy. Clustered DNA lesions, often induced by low-energy electrons (LEEs), contribute significantly to genomic instability and repair resistance. Chemotherapeutic agents like cisplatin can enhance IR-induced damage, making tumor cells more susceptible. Emerging strategies in radiation oncology target DNA repair pathways, using inhibitors like poly(ADP-ribose) polymerase (PARP) to sensitize tumors to IR. Natural products, including polyphenols, flavonoids, and alkaloids, offer promising radioprotective effects by scavenging reactive oxygen species and enhancing DNA repair. These agents not only protect normal tissues but also increase tumor sensitivity to IR, improving therapeutic outcomes. Future research should focus on optimizing these natural agents for clinical use, integrating them into radiotherapy protocols for enhanced efficacy and reduced toxicity.</div></div>","PeriodicalId":53463,"journal":{"name":"Journal of Genetic Engineering and Biotechnology","volume":"23 2","pages":"Article 100501"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetic Engineering and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1687157X25000459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Ionizing radiation (IR) is a key cancer treatment, but its DNA-damaging effects, particularly double-strand breaks (DSBs) and clustered lesions, pose challenges for therapy. Clustered DNA lesions, often induced by low-energy electrons (LEEs), contribute significantly to genomic instability and repair resistance. Chemotherapeutic agents like cisplatin can enhance IR-induced damage, making tumor cells more susceptible. Emerging strategies in radiation oncology target DNA repair pathways, using inhibitors like poly(ADP-ribose) polymerase (PARP) to sensitize tumors to IR. Natural products, including polyphenols, flavonoids, and alkaloids, offer promising radioprotective effects by scavenging reactive oxygen species and enhancing DNA repair. These agents not only protect normal tissues but also increase tumor sensitivity to IR, improving therapeutic outcomes. Future research should focus on optimizing these natural agents for clinical use, integrating them into radiotherapy protocols for enhanced efficacy and reduced toxicity.
期刊介绍:
Journal of genetic engineering and biotechnology is devoted to rapid publication of full-length research papers that leads to significant contribution in advancing knowledge in genetic engineering and biotechnology and provide novel perspectives in this research area. JGEB includes all major themes related to genetic engineering and recombinant DNA. The area of interest of JGEB includes but not restricted to: •Plant genetics •Animal genetics •Bacterial enzymes •Agricultural Biotechnology, •Biochemistry, •Biophysics, •Bioinformatics, •Environmental Biotechnology, •Industrial Biotechnology, •Microbial biotechnology, •Medical Biotechnology, •Bioenergy, Biosafety, •Biosecurity, •Bioethics, •GMOS, •Genomic, •Proteomic JGEB accepts