{"title":"Synthesis and Characterization of a Novel Photocleavable Fluorescent Dye Dyad for Diffusion Imaging","authors":"Damian Schöngen, and , Dominik Wöll*, ","doi":"10.1021/cbmi.4c0008410.1021/cbmi.4c00084","DOIUrl":"https://doi.org/10.1021/cbmi.4c00084https://doi.org/10.1021/cbmi.4c00084","url":null,"abstract":"<p >We report the synthesis and characterization of a photocleavable fluorescent dye dyad. The two constituting dyes show a large spectral overlap and are in close proximity to each other, leading to efficient Förster Resonance Energy Transfer (FRET). Photocleavage of the dyad and the subsequent independent diffusion of both fluorophores qualifies the system to be used for high accuracy diffusion measurements. In contrast to previous work, the dyad reported here can be applied in polar solvents and cleaved by UV-A light. Beneficially, the photolabile linker provides two orthogonal labeling sites for various commercially available fluorescent labels. In this work, we chose the cationic organic dyes ATTO565 and ATTO647N. We outline the synthesis and spectral characterization of the system with UV–Vis and fluorescence spectroscopy as well as fluorescence lifetime and fluorescence quantum yield measurements. Furthermore, we performed proof-of-principle microscopy experiments to demonstrate its capability in polyvinyl acetate films.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"3 3","pages":"199–207 199–207"},"PeriodicalIF":0.0,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbmi.4c00084","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143675804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis and Characterization of a Novel Photocleavable Fluorescent Dye Dyad for Diffusion Imaging.","authors":"Damian Schöngen, Dominik Wöll","doi":"10.1021/cbmi.4c00084","DOIUrl":"10.1021/cbmi.4c00084","url":null,"abstract":"<p><p>We report the synthesis and characterization of a photocleavable fluorescent dye dyad. The two constituting dyes show a large spectral overlap and are in close proximity to each other, leading to efficient Förster Resonance Energy Transfer (FRET). Photocleavage of the dyad and the subsequent independent diffusion of both fluorophores qualifies the system to be used for high accuracy diffusion measurements. In contrast to previous work, the dyad reported here can be applied in polar solvents and cleaved by UV-A light. Beneficially, the photolabile linker provides two orthogonal labeling sites for various commercially available fluorescent labels. In this work, we chose the cationic organic dyes ATTO565 and ATTO647N. We outline the synthesis and spectral characterization of the system with UV-Vis and fluorescence spectroscopy as well as fluorescence lifetime and fluorescence quantum yield measurements. Furthermore, we performed proof-of-principle microscopy experiments to demonstrate its capability in polyvinyl acetate films.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"3 3","pages":"199-207"},"PeriodicalIF":0.0,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11937962/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143733018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Raul Michael, Tallah Modirzadeh, Tahir Bachar Issa, Patrick Jurney
{"title":"Label-Free Visualization and Segmentation of Endothelial Cell Mitochondria Using Holotomographic Microscopy and U-Net.","authors":"Raul Michael, Tallah Modirzadeh, Tahir Bachar Issa, Patrick Jurney","doi":"10.1021/cbmi.4c00100","DOIUrl":"https://doi.org/10.1021/cbmi.4c00100","url":null,"abstract":"<p><p>Understanding the physiological processes underlying cardiovascular disease (CVD) requires examination of endothelial cell (EC) mitochondrial networks, because mitochondrial function and adenosine triphosphate production are crucial in EC metabolism, and consequently influence CVD progression. Although current biochemical assays and immunofluorescence microscopy can reveal how mitochondrial function influences cellular metabolism, they cannot achieve live observation and tracking changes in mitochondrial networks through fusion and fission events. Holotomographic microscopy (HTM) has emerged as a promising technique for real-time, label-free visualization of ECs and their organelles, such as mitochondria. This nondestructive, noninterfering live cell imaging method offers unprecedented opportunities to observe mitochondrial network dynamics. However, because existing image processing tools based on immunofluorescence microscopy techniques are incompatible with HTM images, a machine-learning model is required. Here, we developed a model using a U-net learner with a Resnet18 encoder to identify four classes within HTM images: mitochondrial networks, cell borders, ECs, and background. This method accurately identifies mitochondrial structures and positions. With high accuracy and similarity metrics, the output image successfully provides visualization of mitochondrial networks within HTM images of ECs. This approach enables the study of mitochondrial networks and their effects, and holds promise in advancing understanding of CVD mechanisms.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"3 4","pages":"225-231"},"PeriodicalIF":0.0,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12042131/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144058055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Raul Michael, Tallah Modirzadeh, Tahir Bachar Issa and Patrick Jurney*,
{"title":"Label-Free Visualization and Segmentation of Endothelial Cell Mitochondria Using Holotomographic Microscopy and U-Net","authors":"Raul Michael, Tallah Modirzadeh, Tahir Bachar Issa and Patrick Jurney*, ","doi":"10.1021/cbmi.4c0010010.1021/cbmi.4c00100","DOIUrl":"https://doi.org/10.1021/cbmi.4c00100https://doi.org/10.1021/cbmi.4c00100","url":null,"abstract":"<p >Understanding the physiological processes underlying cardiovascular disease (CVD) requires examination of endothelial cell (EC) mitochondrial networks, because mitochondrial function and adenosine triphosphate production are crucial in EC metabolism, and consequently influence CVD progression. Although current biochemical assays and immunofluorescence microscopy can reveal how mitochondrial function influences cellular metabolism, they cannot achieve live observation and tracking changes in mitochondrial networks through fusion and fission events. Holotomographic microscopy (HTM) has emerged as a promising technique for real-time, label-free visualization of ECs and their organelles, such as mitochondria. This nondestructive, noninterfering live cell imaging method offers unprecedented opportunities to observe mitochondrial network dynamics. However, because existing image processing tools based on immunofluorescence microscopy techniques are incompatible with HTM images, a machine-learning model is required. Here, we developed a model using a U-net learner with a Resnet18 encoder to identify four classes within HTM images: mitochondrial networks, cell borders, ECs, and background. This method accurately identifies mitochondrial structures and positions. With high accuracy and similarity metrics, the output image successfully provides visualization of mitochondrial networks within HTM images of ECs. This approach enables the study of mitochondrial networks and their effects, and holds promise in advancing understanding of CVD mechanisms.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"3 4","pages":"225–231 225–231"},"PeriodicalIF":0.0,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbmi.4c00100","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143878400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sudipta Seth*, Boris Louis, Koki Asano, Toon Van Roy, Maarten B. J. Roeffaers, Elke Debroye, Ivan G. Scheblykin, Martin Vacha* and Johan Hofkens*,
{"title":"Unveiling the Local Fate of Charge Carriers in Halide Perovskite Thin Films via Correlation Clustering Imaging","authors":"Sudipta Seth*, Boris Louis, Koki Asano, Toon Van Roy, Maarten B. J. Roeffaers, Elke Debroye, Ivan G. Scheblykin, Martin Vacha* and Johan Hofkens*, ","doi":"10.1021/cbmi.4c0011310.1021/cbmi.4c00113","DOIUrl":"https://doi.org/10.1021/cbmi.4c00113https://doi.org/10.1021/cbmi.4c00113","url":null,"abstract":"<p >As the field of metal halide perovskites matures, a range of compositionally different perovskite films has found a place in efficient optoelectronic devices. These films feature variable local structural stability, carrier diffusion, and recombination, while there is still a lack of easy-to-implement generic protocols for high-throughput characterization of these variable properties. Correlation clustering imaging (CLIM) is a recently developed tool that resolves peculiarities of local photophysics by assessing the dynamics of photoluminescence detected by wide-field optical microscopy. We demonstrate the capability of CLIM as a high-throughput characterization tool of perovskite films using MAPbI<sub>3</sub> (MAPI) and triple cation mixed halide (TCMH) perovskites as examples where it resolves the interplay of carrier diffusion, recombination, and defect dynamics. We found significant differences in the appearance of metastable defect states in these two films. Despite a better surface quality and larger grain size, MAPI films showed more pronounced effects of fluctuating defect states than did TCMH films. As CLIM shows a significant difference between materials known to lead to different solar cell efficiencies, it can be considered a tool for quality control of thin films for perovskite optoelectronic devices.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"3 4","pages":"244–252 244–252"},"PeriodicalIF":0.0,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbmi.4c00113","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143878399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sudipta Seth, Boris Louis, Koki Asano, Toon Van Roy, Maarten B J Roeffaers, Elke Debroye, Ivan G Scheblykin, Martin Vacha, Johan Hofkens
{"title":"Unveiling the Local Fate of Charge Carriers in Halide Perovskite Thin Films via Correlation Clustering Imaging.","authors":"Sudipta Seth, Boris Louis, Koki Asano, Toon Van Roy, Maarten B J Roeffaers, Elke Debroye, Ivan G Scheblykin, Martin Vacha, Johan Hofkens","doi":"10.1021/cbmi.4c00113","DOIUrl":"https://doi.org/10.1021/cbmi.4c00113","url":null,"abstract":"<p><p>As the field of metal halide perovskites matures, a range of compositionally different perovskite films has found a place in efficient optoelectronic devices. These films feature variable local structural stability, carrier diffusion, and recombination, while there is still a lack of easy-to-implement generic protocols for high-throughput characterization of these variable properties. Correlation clustering imaging (CLIM) is a recently developed tool that resolves peculiarities of local photophysics by assessing the dynamics of photoluminescence detected by wide-field optical microscopy. We demonstrate the capability of CLIM as a high-throughput characterization tool of perovskite films using MAPbI<sub>3</sub> (MAPI) and triple cation mixed halide (TCMH) perovskites as examples where it resolves the interplay of carrier diffusion, recombination, and defect dynamics. We found significant differences in the appearance of metastable defect states in these two films. Despite a better surface quality and larger grain size, MAPI films showed more pronounced effects of fluctuating defect states than did TCMH films. As CLIM shows a significant difference between materials known to lead to different solar cell efficiencies, it can be considered a tool for quality control of thin films for perovskite optoelectronic devices.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"3 4","pages":"244-252"},"PeriodicalIF":0.0,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12042016/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144050820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zeyan Zhuang, Jianqing Li, Ben Zhong Tang, Zujin Zhao
{"title":"Phosphole-Based Fluorescent Biomaterials for Imaging and Therapy.","authors":"Zeyan Zhuang, Jianqing Li, Ben Zhong Tang, Zujin Zhao","doi":"10.1021/cbmi.4c00096","DOIUrl":"https://doi.org/10.1021/cbmi.4c00096","url":null,"abstract":"<p><p>Phospholes are emerging as distinctive conjugated scaffolds for organic fluorescent materials owing to their unique structural characteristics that are different from many commonly studied heterocyclic frameworks. Recently, phosphole-derived skeletons have garnered significant attention as a remarkable electron-accepting moiety, which has achieved substantial advancements in the application of fluorescent biomaterials because of their physicochemical traits, especially in the aspects of stability and versatility. In this context, this review summarizes the progress in phosphole-based fluorescent biomaterials over the past decade (2015-2024). It begins with an overview of the currently developed phosphole-based scaffolds specifically designed for biological applications, illustrating their unique structures and favorable properties. Representative examples are then showcased to demonstrate their potential in various biological scenarios with a primary focus on bioimaging and therapy. Last, challenges and prospects in this field are presented. This review could serve as a consolidated and valuable reference for the future exploration and innovation of bioimaging and therapy platforms.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"3 7","pages":"404-423"},"PeriodicalIF":5.7,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12308598/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144762330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in Tracing Techniques: Mapping the Trajectory of Mesenchymal Stem-Cell-Derived Extracellular Vesicles.","authors":"Jingqi Li, Zhaoyu Wang, Yongchun Wei, Wenshuai Li, Mingzhu He, Jingjing Kang, Jia Xu, Dingbin Liu","doi":"10.1021/cbmi.4c00085","DOIUrl":"10.1021/cbmi.4c00085","url":null,"abstract":"<p><p>Mesenchymal stem-cell-derived extracellular vesicles (MSC-EVs) are nanoscale lipid bilayer vesicles secreted by mesenchymal stem cells. They inherit the parent cell's attributes, facilitating tissue repair and regeneration, promoting angiogenesis, and modulating the immune response, while offering advantages like reduced immunogenicity, straightforward administration, and enhanced stability for long-term storage. These characteristics elevate MSC-EVs as highly promising in cell-free therapy with notable clinical potential. It is critical to delve into their pharmacokinetics and thoroughly elucidate their intracellular and <i>in vivo</i> trajectories. A detailed summary and evaluation of existing tracing strategies are needed to establish standardized protocols. Here, we have summarized and anticipated the research progress of MSC-EVs in various biomedical imaging techniques, including fluorescence imaging, bioluminescence imaging, nuclear imaging (PET, SPECT), tomographic imaging (CT, MRI), and photoacoustic imaging. The challenges and prospects of MSC-EV tracing strategies, with particular emphasis on clinical translation, have been analyzed, with promising solutions proposed.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"3 3","pages":"137-168"},"PeriodicalIF":0.0,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11938168/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143732937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in Tracing Techniques: Mapping the Trajectory of Mesenchymal Stem-Cell-Derived Extracellular Vesicles","authors":"Jingqi Li, Zhaoyu Wang, Yongchun Wei, Wenshuai Li, Mingzhu He, Jingjing Kang, Jia Xu and Dingbin Liu*, ","doi":"10.1021/cbmi.4c0008510.1021/cbmi.4c00085","DOIUrl":"https://doi.org/10.1021/cbmi.4c00085https://doi.org/10.1021/cbmi.4c00085","url":null,"abstract":"<p >Mesenchymal stem-cell-derived extracellular vesicles (MSC-EVs) are nanoscale lipid bilayer vesicles secreted by mesenchymal stem cells. They inherit the parent cell’s attributes, facilitating tissue repair and regeneration, promoting angiogenesis, and modulating the immune response, while offering advantages like reduced immunogenicity, straightforward administration, and enhanced stability for long-term storage. These characteristics elevate MSC-EVs as highly promising in cell-free therapy with notable clinical potential. It is critical to delve into their pharmacokinetics and thoroughly elucidate their intracellular and <i>in vivo</i> trajectories. A detailed summary and evaluation of existing tracing strategies are needed to establish standardized protocols. Here, we have summarized and anticipated the research progress of MSC-EVs in various biomedical imaging techniques, including fluorescence imaging, bioluminescence imaging, nuclear imaging (PET, SPECT), tomographic imaging (CT, MRI), and photoacoustic imaging. The challenges and prospects of MSC-EV tracing strategies, with particular emphasis on clinical translation, have been analyzed, with promising solutions proposed.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"3 3","pages":"137–168 137–168"},"PeriodicalIF":0.0,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbmi.4c00085","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143675710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Determining the Multivalent Effects of d-Peptide-Based Radiotracers.","authors":"Siqi Zhang, Xiaona Sun, Wenhao Liu, Jiang Wu, Yuxuan Wu, Shuo Jiang, Xingkai Wang, Xin Gao, Quan Zuo, Hailong Zhang, Yingzi Zhang, Feng Wang, Rui Wang, Kuan Hu","doi":"10.1021/cbmi.4c00071","DOIUrl":"10.1021/cbmi.4c00071","url":null,"abstract":"<p><p>Dextrorotary (d) peptides, composed of d-amino acids, are hyper-resistant to proteolytic hydrolysis, making them valuable ligands with excellent <i>in vivo</i> stability for radiopharmaceutical development. Multimerization is a well-established strategy for enhancing the <i>in vivo</i> performance of l-peptide-based radiopharmaceuticals. However, the effect of multimerization on the <i>in vivo</i> fate of d-peptide-based radiopharmaceuticals remains largely unexplored. Here, we synthesized the d-peptide DPA, which targets PD-L1, along with its dimer (DP2) and trimer (DP3). PET/CT imaging and <i>ex vivo</i> biodistribution studies were performed to delineate the pharmacokinetics and target interactions of [<sup>68</sup>Ga]DPA, [<sup>68</sup>Ga]DP2, and [<sup>68</sup>Ga]DP3 in both normal and tumor-bearing mice. Our results revealed that tumor uptake and kidney retention increased with higher valency ([<sup>68</sup>Ga]DP3 > [<sup>68</sup>Ga]DP2 > [<sup>68</sup>Ga]DPA). No significant differences were observed in the liver, heart, lung, spleen, intestine, or bone among the three radiotracers. Interestingly, a significant reduction of radioactivity in the bloodstream was detected for the [<sup>68</sup>Ga]DP3-treated group compared to the other two groups. Data analysis revealed that chiral configuration of amino acids and the linking chemistry used in multimerization are the two dominant factors in the <i>in vivo</i> fate of d-peptide multimers. These findings indicate that d-peptide multimerization exerts a distinct influence on <i>in vivo</i> profiles compared to l-peptide multimerization. This study deepens our understanding of how mirror-imaged peptides/proteins interact with the living systems, paving the way for the development of radiopharmaceuticals that harness d-peptides as targeting moieties.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"3 3","pages":"180-190"},"PeriodicalIF":0.0,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11938029/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143732944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}