Synthesis and Characterization of a Novel Photocleavable Fluorescent Dye Dyad for Diffusion Imaging

Damian Schöngen,  and , Dominik Wöll*, 
{"title":"Synthesis and Characterization of a Novel Photocleavable Fluorescent Dye Dyad for Diffusion Imaging","authors":"Damian Schöngen,&nbsp; and ,&nbsp;Dominik Wöll*,&nbsp;","doi":"10.1021/cbmi.4c0008410.1021/cbmi.4c00084","DOIUrl":null,"url":null,"abstract":"<p >We report the synthesis and characterization of a photocleavable fluorescent dye dyad. The two constituting dyes show a large spectral overlap and are in close proximity to each other, leading to efficient Förster Resonance Energy Transfer (FRET). Photocleavage of the dyad and the subsequent independent diffusion of both fluorophores qualifies the system to be used for high accuracy diffusion measurements. In contrast to previous work, the dyad reported here can be applied in polar solvents and cleaved by UV-A light. Beneficially, the photolabile linker provides two orthogonal labeling sites for various commercially available fluorescent labels. In this work, we chose the cationic organic dyes ATTO565 and ATTO647N. We outline the synthesis and spectral characterization of the system with UV–Vis and fluorescence spectroscopy as well as fluorescence lifetime and fluorescence quantum yield measurements. Furthermore, we performed proof-of-principle microscopy experiments to demonstrate its capability in polyvinyl acetate films.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"3 3","pages":"199–207 199–207"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbmi.4c00084","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/cbmi.4c00084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We report the synthesis and characterization of a photocleavable fluorescent dye dyad. The two constituting dyes show a large spectral overlap and are in close proximity to each other, leading to efficient Förster Resonance Energy Transfer (FRET). Photocleavage of the dyad and the subsequent independent diffusion of both fluorophores qualifies the system to be used for high accuracy diffusion measurements. In contrast to previous work, the dyad reported here can be applied in polar solvents and cleaved by UV-A light. Beneficially, the photolabile linker provides two orthogonal labeling sites for various commercially available fluorescent labels. In this work, we chose the cationic organic dyes ATTO565 and ATTO647N. We outline the synthesis and spectral characterization of the system with UV–Vis and fluorescence spectroscopy as well as fluorescence lifetime and fluorescence quantum yield measurements. Furthermore, we performed proof-of-principle microscopy experiments to demonstrate its capability in polyvinyl acetate films.

一种新型光可切割扩散成像荧光染料的合成与表征
我们报道了一种光可切割荧光染料的合成和表征。两种构成染料显示出很大的光谱重叠,并且彼此非常接近,导致有效的Förster共振能量转移(FRET)。二极体的光裂解和随后两个荧光团的独立扩散使该系统能够用于高精度的扩散测量。与以前的研究相反,本文报道的二元结构可以在极性溶剂中应用,并可以在UV-A光下切割。有利的是,可光性连接体为各种商用荧光标记提供了两个正交标记位点。在这项工作中,我们选择了阳离子有机染料ATTO565和ATTO647N。我们概述了系统的合成和光谱表征与紫外可见光谱和荧光光谱以及荧光寿命和荧光量子产率的测量。此外,我们进行了原理验证显微镜实验,以证明其在聚醋酸乙烯薄膜中的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical & Biomedical Imaging
Chemical & Biomedical Imaging 化学与生物成像-
CiteScore
1.00
自引率
0.00%
发文量
0
期刊介绍: Chemical & Biomedical Imaging is a peer-reviewed open access journal devoted to the publication of cutting-edge research papers on all aspects of chemical and biomedical imaging. This interdisciplinary field sits at the intersection of chemistry physics biology materials engineering and medicine. The journal aims to bring together researchers from across these disciplines to address cutting-edge challenges of fundamental research and applications.Topics of particular interest include but are not limited to:Imaging of processes and reactionsImaging of nanoscale microscale and mesoscale materialsImaging of biological interactions and interfacesSingle-molecule and cellular imagingWhole-organ and whole-body imagingMolecular imaging probes and contrast agentsBioluminescence chemiluminescence and electrochemiluminescence imagingNanophotonics and imagingChemical tools for new imaging modalitiesChemical and imaging techniques in diagnosis and therapyImaging-guided drug deliveryAI and machine learning assisted imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信