{"title":"Synthesis and Characterization of a Novel Photocleavable Fluorescent Dye Dyad for Diffusion Imaging.","authors":"Damian Schöngen, Dominik Wöll","doi":"10.1021/cbmi.4c00084","DOIUrl":null,"url":null,"abstract":"<p><p>We report the synthesis and characterization of a photocleavable fluorescent dye dyad. The two constituting dyes show a large spectral overlap and are in close proximity to each other, leading to efficient Förster Resonance Energy Transfer (FRET). Photocleavage of the dyad and the subsequent independent diffusion of both fluorophores qualifies the system to be used for high accuracy diffusion measurements. In contrast to previous work, the dyad reported here can be applied in polar solvents and cleaved by UV-A light. Beneficially, the photolabile linker provides two orthogonal labeling sites for various commercially available fluorescent labels. In this work, we chose the cationic organic dyes ATTO565 and ATTO647N. We outline the synthesis and spectral characterization of the system with UV-Vis and fluorescence spectroscopy as well as fluorescence lifetime and fluorescence quantum yield measurements. Furthermore, we performed proof-of-principle microscopy experiments to demonstrate its capability in polyvinyl acetate films.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"3 3","pages":"199-207"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11937962/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/cbmi.4c00084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/24 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We report the synthesis and characterization of a photocleavable fluorescent dye dyad. The two constituting dyes show a large spectral overlap and are in close proximity to each other, leading to efficient Förster Resonance Energy Transfer (FRET). Photocleavage of the dyad and the subsequent independent diffusion of both fluorophores qualifies the system to be used for high accuracy diffusion measurements. In contrast to previous work, the dyad reported here can be applied in polar solvents and cleaved by UV-A light. Beneficially, the photolabile linker provides two orthogonal labeling sites for various commercially available fluorescent labels. In this work, we chose the cationic organic dyes ATTO565 and ATTO647N. We outline the synthesis and spectral characterization of the system with UV-Vis and fluorescence spectroscopy as well as fluorescence lifetime and fluorescence quantum yield measurements. Furthermore, we performed proof-of-principle microscopy experiments to demonstrate its capability in polyvinyl acetate films.
期刊介绍:
Chemical & Biomedical Imaging is a peer-reviewed open access journal devoted to the publication of cutting-edge research papers on all aspects of chemical and biomedical imaging. This interdisciplinary field sits at the intersection of chemistry physics biology materials engineering and medicine. The journal aims to bring together researchers from across these disciplines to address cutting-edge challenges of fundamental research and applications.Topics of particular interest include but are not limited to:Imaging of processes and reactionsImaging of nanoscale microscale and mesoscale materialsImaging of biological interactions and interfacesSingle-molecule and cellular imagingWhole-organ and whole-body imagingMolecular imaging probes and contrast agentsBioluminescence chemiluminescence and electrochemiluminescence imagingNanophotonics and imagingChemical tools for new imaging modalitiesChemical and imaging techniques in diagnosis and therapyImaging-guided drug deliveryAI and machine learning assisted imaging