{"title":"On the Latent Structure of Responses and Response Times from Multidimensional Personality Measurement with Ordinal Rating Scales.","authors":"Inhan Kang","doi":"10.1080/00273171.2024.2436406","DOIUrl":"https://doi.org/10.1080/00273171.2024.2436406","url":null,"abstract":"<p><p>In this article, we propose latent variable models that jointly account for responses and response times (RTs) in multidimensional personality measurements. We address two key research questions regarding the latent structure of RT distributions through model comparisons. First, we decompose RT into decision and non-decision times by incorporating irreducible minimum shifts in RT distributions, as done in cognitive decision-making models. Second, we investigate whether the speed factor underlying decision times should be multidimensional with the same latent structure as personality traits, or, if a unidimensional speed factor suffices. Comprehensive model comparisons across four distinct datasets suggest that a joint model with person-specific parameters to account for shifts in RT distributions and a unidimensional speed factor provides the best account for ordinal responses and RTs. Posterior predictive checks further confirm these findings. Additionally, simulation studies validate the parameter recovery of the proposed models and support the empirical results. Most importantly, failing to account for the irreducible minimum shift in RT distributions leads to systematic biases in other model components and severe underestimation of the nonlinear relationship between responses and RTs.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"1-30"},"PeriodicalIF":5.3,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142883392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anja F Ernst, Eva Ceulemans, Laura F Bringmann, Janne Adolf
{"title":"Evaluating Contextual Models for Intensive Longitudinal Data in the Presence of Noise.","authors":"Anja F Ernst, Eva Ceulemans, Laura F Bringmann, Janne Adolf","doi":"10.1080/00273171.2024.2436420","DOIUrl":"https://doi.org/10.1080/00273171.2024.2436420","url":null,"abstract":"<p><p>Nowadays research into affect frequently employs intensive longitudinal data to assess fluctuations in daily emotional experiences. The resulting data are often analyzed with moderated autoregressive models to capture the influences of contextual events on the emotion dynamics. The presence of noise (e.g., measurement error) in the measures of the contextual events, however, is commonly ignored in these models. Disregarding noise in these covariates when it is present may result in biased parameter estimates and wrong conclusions drawn about the underlying emotion dynamics. In a simulation study we evaluate the estimation accuracy, assessed in terms of bias and variance, of different moderated autoregressive models in the presence of noise in the covariate. We show that estimation accuracy decreases when the amount of noise in the covariate increases. We also show that this bias is magnified by a larger effect of the covariate, a slower switching frequency of the covariate, a discrete rather than a continuous covariate, and constant rather than occasional noise in the covariate. We also show that the bias that results from a noisy covariate does not decrease when the number of observations increases. We end with a few recommendations for applying moderated autoregressive models based on our simulation.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"1-21"},"PeriodicalIF":5.3,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142830449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jannis Kreienkamp, Maximilian Agostini, Rei Monden, Kai Epstude, Peter de Jonge, Laura F Bringmann
{"title":"A Gentle Introduction and Application of Feature-Based Clustering with Psychological Time Series.","authors":"Jannis Kreienkamp, Maximilian Agostini, Rei Monden, Kai Epstude, Peter de Jonge, Laura F Bringmann","doi":"10.1080/00273171.2024.2432918","DOIUrl":"10.1080/00273171.2024.2432918","url":null,"abstract":"<p><p>Psychological researchers and practitioners collect increasingly complex time series data aimed at identifying differences between the developments of participants or patients. Past research has proposed a number of dynamic measures that describe meaningful developmental patterns for psychological data (e.g., instability, inertia, linear trend). Yet, commonly used clustering approaches are often not able to include these meaningful measures (e.g., due to model assumptions). We propose feature-based time series clustering as a flexible, transparent, and well-grounded approach that clusters participants based on the dynamic measures directly using common clustering algorithms. We introduce the approach and illustrate the utility of the method with real-world empirical data that highlight common ESM challenges of multivariate conceptualizations, structural missingness, and non-stationary trends. We use the data to showcase the main steps of input selection, feature extraction, feature reduction, feature clustering, and cluster evaluation. We also provide practical algorithm overviews and readily available code for data preparation, analysis, and interpretation.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"1-31"},"PeriodicalIF":5.3,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142808443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Steven P Reise, Jared M Block, Maxwell Mansolf, Mark G Haviland, Benjamin D Schalet, Rachel Kimerling
{"title":"Using Projective IRT to Evaluate the Effects of Multidimensionality on Unidimensional IRT Model Parameters.","authors":"Steven P Reise, Jared M Block, Maxwell Mansolf, Mark G Haviland, Benjamin D Schalet, Rachel Kimerling","doi":"10.1080/00273171.2024.2430630","DOIUrl":"https://doi.org/10.1080/00273171.2024.2430630","url":null,"abstract":"<p><p>The application of unidimensional IRT models requires item response data to be unidimensional. Often, however, item response data contain a dominant dimension, as well as one or more nuisance dimensions caused by content clusters. Applying a unidimensional IRT model to multidimensional data causes violations of local independence, which can vitiate IRT applications. To evaluate and, possibly, remedy the problems caused by forcing unidimensional models onto multidimensional data, we consider the creation of a projected unidimensional IRT model, where the multidimensionality caused by nuisance dimensions is controlled for by integrating them out from the model. Specifically, when item response data have a bifactor structure, one can create a unidimensional model based on projecting to the general factor. Importantly, the projected unidimensional IRT model can be used as a benchmark for comparison to a unidimensional model to judge the practical consequences of multidimensionality. Limitations of the proposed approach are detailed.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"1-17"},"PeriodicalIF":5.3,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142803121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lydia G Speyer, Xinxin Zhu, Yi Yang, Denis Ribeaud, Manuel Eisner
{"title":"On the Importance of Considering Concurrent Effects in Random-Intercept Cross-Lagged Panel Modelling: Example Analysis of Bullying and Internalising Problems.","authors":"Lydia G Speyer, Xinxin Zhu, Yi Yang, Denis Ribeaud, Manuel Eisner","doi":"10.1080/00273171.2024.2428222","DOIUrl":"https://doi.org/10.1080/00273171.2024.2428222","url":null,"abstract":"<p><p>Random-intercept cross-lagged panel models (RI-CLPMs) are increasingly used to investigate research questions focusing on how one variable at one time point affects another variable at the subsequent time point. Due to the implied temporal sequence of events in such research designs, interpretations of RI-CLPMs primarily focus on longitudinal cross-lagged paths while disregarding concurrent associations and modeling these only as residual covariances. However, this may cause biased cross-lagged effects. This may be especially so when data collected at the same time point refers to different reference timeframes, creating a temporal sequence of events for constructs measured concurrently. To examine this issue, we conducted a series of empirical analyses in which the impact of modeling or not modeling of directional within-time point associations may impact inferences drawn from RI-CLPMs using data from the longitudinal z-proso study. Results highlight that not considering directional concurrent effects may lead to biased cross-lagged effects. Thus, it is essential to carefully consider potential directional concurrent effects when choosing models to analyze directional associations between variables over time. If temporal sequences of concurrent effects cannot be clearly established, testing multiple models and drawing conclusions based on the robustness of effects across all models is recommended.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"1-17"},"PeriodicalIF":5.3,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142717612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Latently Mediating: A Bayesian Take on Causal Mediation Analysis with Structured Survey Data.","authors":"Alessandro Varacca","doi":"10.1080/00273171.2024.2424514","DOIUrl":"https://doi.org/10.1080/00273171.2024.2424514","url":null,"abstract":"<p><p>In this paper, we propose a Bayesian causal mediation approach to the analysis of experimental data when both the outcome and the mediator are measured through structured questionnaires based on Likert-scaled inquiries. Our estimation strategy builds upon the error-in-variables literature and, specifically, it leverages Item Response Theory to explicitly model the observed surrogate mediator and outcome measures. We employ their elicited latent counterparts in a simple g-computation algorithm, where we exploit the fundamental identifying assumptions of causal mediation analysis to impute all the relevant counterfactuals and estimate the causal parameters of interest. We finally devise a sensitivity analysis procedure to test the robustness of the proposed methods to the restrictive requirement of mediator's conditional ignorability. We demonstrate the functioning of our proposed methodology through an empirical application using survey data from an online experiment on food purchasing intentions and the effect of different labeling regimes.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"1-23"},"PeriodicalIF":5.3,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142649633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Latent Markov Models to Test the Strategy Use of 3-Year-Olds in a Rule-Based Feedback-Learning Task.","authors":"L Lichtenberg, I Visser, M E J Raijmakers","doi":"10.1080/00273171.2023.2170963","DOIUrl":"10.1080/00273171.2023.2170963","url":null,"abstract":"<p><p>This study is the first to investigate how 3-year-olds learn simple rules from feedback using the Toddler Card Sorting Task (TCST). To account for intra- and inter- individual differences in the learning process, latent Markov models were fitted to the time series of accuracy responses using maximum likelihood techniques (Visser et al., 2002). In a first, exploratory study (N = 110, 3- to 5-years olds) a considerable group of 3-year olds applied a hypothesis testing learning strategy. A second study confirmed these results with a preregistered study (3-years olds, N = 60). Under supportive learning conditions, a majority of 3-year- olds was capable of hypothesis testing. Furthermore, older children and those with bigger working memory capacities were more likely to use hypothesis testing, even though the latter group perseverated more than younger children or those with smaller working memory capacities. 3-year-olds are more advanced feedback-learners than assumed.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"1123-1136"},"PeriodicalIF":5.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10675513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"From Behavioral Genetics to Idiographic Science: Methodological Developments and Applications Inspired by the Work of Peter C. M. Molenaar.","authors":"Sy-Miin Chow, Ellen L Hamaker, Nilam Ram","doi":"10.1080/00273171.2024.2394054","DOIUrl":"10.1080/00273171.2024.2394054","url":null,"abstract":"<p><p>This special issue is a collection of papers inspired by Dr. Molenaar's work and innovations - a tribute to his passion for advancing science and his ability to ignite a spark of creativity and innovation in multiple generations of scientists. Following Dr. Molenaar's creative breadth, the papers address a wide variety of topics - sharing of new methodological developments, ideas, and findings in idiographic science, study of intraindividual variation, behavioral genetics, model inference/identification/selection, and more.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"1107-1110"},"PeriodicalIF":5.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142114706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Homogeneity Assumptions in the Analysis of Dynamic Processes.","authors":"Siwei Liu, Kathleen M Gates, Emilio Ferrer","doi":"10.1080/00273171.2023.2225172","DOIUrl":"10.1080/00273171.2023.2225172","url":null,"abstract":"<p><p>With the increased use of time series data in human research, ranging from ecological momentary assessments to data passively obtained, researchers can explore dynamic processes more than ever before. An important question researchers must ask themselves is, do I think all individuals have similar processes? If not, how different, and in what ways? Dr. Peter Molenaar's work set the foundation to answer these questions by providing insight into individual-level analysis for processes that are assumed to differ across individuals in at least some aspects. Currently, such assumptions do not have a clear taxonomy regarding the degree of homogeneity in the patterns of relations among variables and the corresponding parameter values. This paper provides the language with which researchers can discuss assumptions inherent in their analyses. We define strict homogeneity as the assumption that all individuals have an identical pattern of relations as well as parameter values; pattern homogeneity assumes the same pattern of relations but parameter values can differ; weak homogeneity assumes there are some (but not all) generalizable aspects of the process; and no homogeneity explicitly assumes no population-level similarities in dynamic processes across individuals. We demonstrate these assumptions with an empirical data set of daily emotions in couples.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"1166-1176"},"PeriodicalIF":5.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9820682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Touchstones of Equivalence and the Houdini Transformation.","authors":"Michael J Rovine, Paul A McDermott","doi":"10.1080/00273171.2023.2205390","DOIUrl":"10.1080/00273171.2023.2205390","url":null,"abstract":"<p><p>Inspired by Peter Molenaar's Houdini transformation, we consider the idea of touchstones between different models. Touchstones represent instances where models that appear different on the surface can have equivalent characteristics. Touchstones can appear as identical tests of model parameters. They can exist in the mean structure, in the covariance structure, or in both. In the latter case, the models will generate identical mean and covariance structures and will fit the data equally well. After showing some examples of touchstones and how they result from constraints on a general model, we show how that idea can suggest Molenaar's Houdini transformation. This transformation allows one to take a latent variable model and derive an equivalent model comprised solely of manifest (observed) variables. As equivalent models, the parameters of one can be transformed into the parameters of the other.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"1137-1147"},"PeriodicalIF":5.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9840671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}