中介调节的因果估计与多重稳健估计。

IF 5.3 3区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Xiao Liu, Mark Eddy, Charles R Martinez
{"title":"中介调节的因果估计与多重稳健估计。","authors":"Xiao Liu, Mark Eddy, Charles R Martinez","doi":"10.1080/00273171.2024.2444949","DOIUrl":null,"url":null,"abstract":"<p><p>When studying effect heterogeneity between different subgroups (i.e., moderation), researchers are frequently interested in the mediation mechanisms underlying the heterogeneity, that is, the mediated moderation. For assessing mediated moderation, conventional methods typically require parametric models to define mediated moderation, which has limitations when parametric models may be misspecified and when causal interpretation is of interest. For causal interpretations about mediation, causal mediation analysis is increasingly popular but is underdeveloped for mediated moderation analysis. In this study, we extend the causal mediation literature, and we propose a novel method for mediated moderation analysis. Using the potential outcomes framework, we obtain two causal estimands that decompose the total moderation: (i) the mediated moderation attributable to a mediator and (ii) the remaining moderation unattributable to the mediator. We also develop a multiply robust estimation method for the mediated moderation analysis, which can incorporate machine learning methods in the inference of the causal estimands. We evaluate the proposed method through simulations. We illustrate the proposed mediated moderation analysis by assessing the mediation mechanism that underlies the gender difference in the effect of a preventive intervention on adolescent behavioral outcomes.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"1-27"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Causal Estimands and Multiply Robust Estimation of Mediated-Moderation.\",\"authors\":\"Xiao Liu, Mark Eddy, Charles R Martinez\",\"doi\":\"10.1080/00273171.2024.2444949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>When studying effect heterogeneity between different subgroups (i.e., moderation), researchers are frequently interested in the mediation mechanisms underlying the heterogeneity, that is, the mediated moderation. For assessing mediated moderation, conventional methods typically require parametric models to define mediated moderation, which has limitations when parametric models may be misspecified and when causal interpretation is of interest. For causal interpretations about mediation, causal mediation analysis is increasingly popular but is underdeveloped for mediated moderation analysis. In this study, we extend the causal mediation literature, and we propose a novel method for mediated moderation analysis. Using the potential outcomes framework, we obtain two causal estimands that decompose the total moderation: (i) the mediated moderation attributable to a mediator and (ii) the remaining moderation unattributable to the mediator. We also develop a multiply robust estimation method for the mediated moderation analysis, which can incorporate machine learning methods in the inference of the causal estimands. We evaluate the proposed method through simulations. We illustrate the proposed mediated moderation analysis by assessing the mediation mechanism that underlies the gender difference in the effect of a preventive intervention on adolescent behavioral outcomes.</p>\",\"PeriodicalId\":53155,\"journal\":{\"name\":\"Multivariate Behavioral Research\",\"volume\":\" \",\"pages\":\"1-27\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multivariate Behavioral Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1080/00273171.2024.2444949\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multivariate Behavioral Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/00273171.2024.2444949","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在研究不同亚组间的效应异质性(即调节)时,研究者往往对异质性的中介机制感兴趣,即介导的调节。为了评估中介性调节,传统方法通常需要参数模型来定义中介性调节,当参数模型可能被错误指定和当因果解释感兴趣时,这有局限性。对于中介的因果解释,因果中介分析越来越受欢迎,但对中介的调节分析还不发达。在本研究中,我们扩展了因果中介文献,并提出了一种新的中介调节分析方法。使用潜在结果框架,我们获得了分解总调节的两个因果估计:(i)归因于调解人的中介调节和(ii)归因于调解人的剩余调节。我们还开发了一种用于中介调节分析的多重稳健估计方法,该方法可以将机器学习方法纳入因果估计的推断中。我们通过仿真对该方法进行了评估。我们通过评估预防干预对青少年行为结果影响的性别差异的中介机制来说明所提出的中介调节分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Causal Estimands and Multiply Robust Estimation of Mediated-Moderation.

When studying effect heterogeneity between different subgroups (i.e., moderation), researchers are frequently interested in the mediation mechanisms underlying the heterogeneity, that is, the mediated moderation. For assessing mediated moderation, conventional methods typically require parametric models to define mediated moderation, which has limitations when parametric models may be misspecified and when causal interpretation is of interest. For causal interpretations about mediation, causal mediation analysis is increasingly popular but is underdeveloped for mediated moderation analysis. In this study, we extend the causal mediation literature, and we propose a novel method for mediated moderation analysis. Using the potential outcomes framework, we obtain two causal estimands that decompose the total moderation: (i) the mediated moderation attributable to a mediator and (ii) the remaining moderation unattributable to the mediator. We also develop a multiply robust estimation method for the mediated moderation analysis, which can incorporate machine learning methods in the inference of the causal estimands. We evaluate the proposed method through simulations. We illustrate the proposed mediated moderation analysis by assessing the mediation mechanism that underlies the gender difference in the effect of a preventive intervention on adolescent behavioral outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Multivariate Behavioral Research
Multivariate Behavioral Research 数学-数学跨学科应用
CiteScore
7.60
自引率
2.60%
发文量
49
审稿时长
>12 weeks
期刊介绍: Multivariate Behavioral Research (MBR) publishes a variety of substantive, methodological, and theoretical articles in all areas of the social and behavioral sciences. Most MBR articles fall into one of two categories. Substantive articles report on applications of sophisticated multivariate research methods to study topics of substantive interest in personality, health, intelligence, industrial/organizational, and other behavioral science areas. Methodological articles present and/or evaluate new developments in multivariate methods, or address methodological issues in current research. We also encourage submission of integrative articles related to pedagogy involving multivariate research methods, and to historical treatments of interest and relevance to multivariate research methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信