{"title":"Alternative Approaches to Estimate Causal Mediated Effects in the Single-Mediator Model","authors":"Diana Alvarez-Bartolo, David P. MacKinnon","doi":"10.1080/00273171.2024.2310395","DOIUrl":"https://doi.org/10.1080/00273171.2024.2310395","url":null,"abstract":"Published in Multivariate Behavioral Research (Ahead of Print, 2024)","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":"1 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139902309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zachary F. Fisher, Younghoon Kim, Vladas Pipiras, Christopher Crawford, Daniel J. Petrie, Michael D. Hunter, Charles F. Geier
{"title":"Structured Estimation of Heterogeneous Time Series","authors":"Zachary F. Fisher, Younghoon Kim, Vladas Pipiras, Christopher Crawford, Daniel J. Petrie, Michael D. Hunter, Charles F. Geier","doi":"10.1080/00273171.2023.2283837","DOIUrl":"https://doi.org/10.1080/00273171.2023.2283837","url":null,"abstract":"How best to model structurally heterogeneous processes is a foundational question in the social, health and behavioral sciences. Recently, Fisher et al. introduced the multi-VAR approach for simult...","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":"36 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139948810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Assessing Fit in Common Factor Models Using Empirical Moment Functions","authors":"Youjin Sung, Yang Liu","doi":"10.1080/00273171.2024.2310421","DOIUrl":"https://doi.org/10.1080/00273171.2024.2310421","url":null,"abstract":"Published in Multivariate Behavioral Research (Ahead of Print, 2024)","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":"26 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139756385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modeling Intraindividual Variability as Predictors in Longitudinal Research","authors":"Yuan Fang, Lijuan Wang","doi":"10.1080/00273171.2024.2310434","DOIUrl":"https://doi.org/10.1080/00273171.2024.2310434","url":null,"abstract":"Published in Multivariate Behavioral Research (Ahead of Print, 2024)","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":"8 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139756176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Extended Taylor Russell Model for Multiple Predictors","authors":"Ziyu Ren, Niels Waller","doi":"10.1080/00273171.2024.2310427","DOIUrl":"https://doi.org/10.1080/00273171.2024.2310427","url":null,"abstract":"Published in Multivariate Behavioral Research (Ahead of Print, 2024)","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":"222 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139756310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Handling Missing Data in Randomized Controlled Trials with Omitted Moderation Effects","authors":"Elizabeth M. Pauley, Manshu Yang","doi":"10.1080/00273171.2024.2310407","DOIUrl":"https://doi.org/10.1080/00273171.2024.2310407","url":null,"abstract":"Published in Multivariate Behavioral Research (Ahead of Print, 2024)","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":"23 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139756301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Analytical Comparison of Three Modeling Approaches for Longitudinal Mediation Analysis","authors":"Ruoxuan Li, Lijuan Wang","doi":"10.1080/00273171.2024.2310415","DOIUrl":"https://doi.org/10.1080/00273171.2024.2310415","url":null,"abstract":"Published in Multivariate Behavioral Research (Ahead of Print, 2024)","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":"168-169 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139756188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Go Multivariate: Recommendations on Bayesian Multilevel Hidden Markov Models with Categorical Data.","authors":"Sebastian Mildiner Moraga, Emmeke Aarts","doi":"10.1080/00273171.2023.2205392","DOIUrl":"10.1080/00273171.2023.2205392","url":null,"abstract":"<p><p>The multilevel hidden Markov model (MHMM) is a promising method to investigate intense longitudinal data obtained within the social and behavioral sciences. The MHMM quantifies information on the latent dynamics of behavior over time. In addition, heterogeneity between individuals is accommodated with the inclusion of individual-specific random effects, facilitating the study of individual differences in dynamics. However, the performance of the MHMM has not been sufficiently explored. We performed an extensive simulation to assess the effect of the number of dependent variables (1-8), number of individuals (5-90), and number of observations per individual (100-1600) on the estimation performance of a Bayesian MHMM with categorical data including various levels of state distinctiveness and separation. We found that using multivariate data generally alleviates the sample size needed and improves the stability of the results. Moreover, including variables only consisting of random noise was generally not detrimental to model performance. Regarding the estimation of group-level parameters, the number of individuals and observations largely compensate for each other. However, only the former drives the estimation of between-individual variability. We conclude with guidelines on the sample size necessary based on the level of state distinctiveness and separation and study objectives of the researcher.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"17-45"},"PeriodicalIF":3.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9481386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Problems of Domain Factors with Small Factor Loadings in Bi-Factor Models.","authors":"Nils Petras, Thorsten Meiser","doi":"10.1080/00273171.2023.2228757","DOIUrl":"10.1080/00273171.2023.2228757","url":null,"abstract":"<p><p>Many measurement designs produce domain factors with small variances and factor loadings. The current study investigates the cause, prevalence, and problematic consequences of such domain factors. We collected a meta-analytic sample of empirical applications, conducted a simulation study on statistical power and estimation precision, and provide a reanalysis of an empirical example. The meta-analysis shows that about a quarter of all standardized domain factor loadings is in the range of <math><mrow><mo>-</mo><mn>.2</mn><mo><</mo><mi>λ</mi><mo><</mo><mn>.2</mn></mrow></math> and about a third of all domains is measured by five or fewer indicators, resulting in small factor variances. The simulation study examines the associated difficulties concerning statistical power, trait recovery, irregular estimates, and estimation precision for a range of such realistic cases. The empirical example illustrates the challenge to develop measures that produce clearly interpretable domain factors. Study planning and interpretation need to take the (expected) sum of squared factor loadings per domain factor into account. This is relevant even if influences of domain factors are desired to be small, and equally applies to different model variants. We propose several strategies for how researchers may better unlock the bifactor model's full potential and clarify its interpretation.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"123-147"},"PeriodicalIF":3.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10154752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}