{"title":"Cluster Randomized Trials with a Pretest and Posttest: Equivalence of Three-, Two- and One-Level Analyses, and Sample Size Calculation.","authors":"Gerard J P Van Breukelen","doi":"10.1080/00273171.2023.2240779","DOIUrl":"10.1080/00273171.2023.2240779","url":null,"abstract":"<p><p>In a cluster randomized trial clusters of persons, for instance, schools or health centers, are assigned to treatments, and all persons in the same cluster get the same treatment. Although less powerful than individual randomization, cluster randomization is a good alternative if individual randomization is impossible or leads to severe treatment contamination (carry-over). Focusing on cluster randomized trials with a pretest and post-test of a quantitative outcome, this paper shows the equivalence of four methods of analysis: a three-level mixed (multilevel) regression for repeated measures with as levels cluster, person, and time, and allowing for unstructured between-cluster and within-cluster covariance matrices; a two-level mixed regression with as levels cluster and person, using change from baseline as outcome; a two-level mixed regression with as levels cluster and time, using cluster means as data; a one-level analysis of cluster means of change from baseline. Subsequently, similar equivalences are shown between a constrained mixed model and methods using the pretest as covariate. All methods are also compared on a cluster randomized trial on mental health in children. From these equivalences follows a simple method to calculate the sample size for a cluster randomized trial with baseline measurement, which is demonstrated step-by-step.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"206-228"},"PeriodicalIF":3.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10018178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ABkPowerCalculator: An App to Compute Power for Balanced (AB)<sup>k</sup> Single Case Experimental Designs.","authors":"Prathiba Batley, Madhav Thamaran, Larry V Hedges","doi":"10.1080/00273171.2023.2261229","DOIUrl":"10.1080/00273171.2023.2261229","url":null,"abstract":"<p><p>Single case experimental designs are an important research design in behavioral and medical research. Although there are design standards prescribed by the What Works Clearinghouse for single case experimental designs, these standards do not include statistically derived power computations. Recently we derived the equations for computing power for (AB)<sup>k</sup> designs. However, these computations and the software code in R may not be accessible to applied researchers who are most likely to want to compute power for their studies. Therefore, we have developed an (AB)<sup>k</sup> power calculator Shiny App (https://abkpowercalculator.shinyapps.io/ABkpowercalculator/) that researchers can use with no software training. These power computations assume that the researcher would be interested in fitting multilevel models with autocorrelations or conduct similar analyses. The purpose of this software contribution is to briefly explain how power is derived for balanced (AB)<sup>k</sup> designs and to elaborate on how to use the Shiny App. The app works well on not just computers but mobile phones without installing the R program. We believe this can be a valuable tool for practitioners and applied researchers who want to plan their single case studies with sufficient power to detect appropriate effect sizes.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"406-410"},"PeriodicalIF":3.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41240849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Myrthe Veenman, Loes H C Janssen, Lisanne A E M van Houtum, Mirjam C M Wever, Bart Verkuil, Sacha Epskamp, Eiko I Fried, Bernet M Elzinga
{"title":"A Network Study of Family Affect Systems in Daily Life.","authors":"Myrthe Veenman, Loes H C Janssen, Lisanne A E M van Houtum, Mirjam C M Wever, Bart Verkuil, Sacha Epskamp, Eiko I Fried, Bernet M Elzinga","doi":"10.1080/00273171.2023.2283632","DOIUrl":"10.1080/00273171.2023.2283632","url":null,"abstract":"<p><p>Adolescence is a time period characterized by extremes in affect and increasing prevalence of mental health problems. Prior studies have illustrated how affect states of adolescents are related to interactions with parents. However, it remains unclear how affect states among family triads, that is adolescents and their parents, are related in daily life. This study investigated affect state dynamics (happy, sad, relaxed, and irritated) of 60 family triads, including 60 adolescents (<i>M</i><sub>age</sub> = 15.92, 63.3% females), fathers and mothers (<i>M</i><sub>age</sub> = 49.16). The families participated in the RE-PAIR study, where they reported their affect states in four ecological momentary assessments per day for 14 days. First, we used multilevel vector-autoregressive network models to estimate affect dynamics across all families, and for each family individually. Resulting models elucidated how family affect states were related at the same moment, and over time. We identified relations from parents to adolescents and vice versa, while considering family variation in these relations. Second, we evaluated the statistical performance of the network model <i>via</i> a simulation study, varying the percentage missing data, the number of families, and the number of time points. We conclude with substantive and statistical recommendations for future research on family affect dynamics.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"371-405"},"PeriodicalIF":3.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139736686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Generalized Bootstrap Procedure of the Standard Error and Confidence Interval Estimation for Inverse Probability of Treatment Weighting.","authors":"Tenglong Li, Jordan Lawson","doi":"10.1080/00273171.2023.2254541","DOIUrl":"10.1080/00273171.2023.2254541","url":null,"abstract":"<p><p>The inverse probability of treatment weighting (IPTW) approach is commonly used in propensity score analysis to infer causal effects in regression models. Due to oversized IPTW weights and errors associated with propensity score estimation, the IPTW approach can underestimate the standard error of causal effect. To remediate this, bootstrap standard errors have been recommended to replace the IPTW standard error, but the ordinary bootstrap (OB) procedure might still result in underestimation of the standard error because of its inefficient resampling scheme and untreated oversized weights. In this paper, we develop a generalized bootstrap (GB) procedure for estimating the standard error and confidence intervals of the IPTW approach. Compared with the OB procedure and other three procedures in comparison, the GB procedure has the highest precision and yields conservative standard error estimates. As a result, the GB procedure produces short confidence intervals with highest coverage rates. We demonstrate the effectiveness of the GB procedure <i>via</i> two simulation studies and a dataset from the National Educational Longitudinal Study-1988 (NELS-88).</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"251-265"},"PeriodicalIF":3.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10303023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Madhurbain Singh, Brad Verhulst, Philip Vinh, Yi Daniel Zhou, Luis F S Castro-de-Araujo, Jouke-Jan Hottenga, René Pool, Eco J C de Geus, Jacqueline M Vink, Dorret I Boomsma, Hermine H M Maes, Conor V Dolan, Michael C Neale
{"title":"Using Instrumental Variables to Measure Causation over Time in Cross-Lagged Panel Models.","authors":"Madhurbain Singh, Brad Verhulst, Philip Vinh, Yi Daniel Zhou, Luis F S Castro-de-Araujo, Jouke-Jan Hottenga, René Pool, Eco J C de Geus, Jacqueline M Vink, Dorret I Boomsma, Hermine H M Maes, Conor V Dolan, Michael C Neale","doi":"10.1080/00273171.2023.2283634","DOIUrl":"10.1080/00273171.2023.2283634","url":null,"abstract":"<p><p>Cross-lagged panel models (CLPMs) are commonly used to estimate causal influences between two variables with repeated assessments. The lagged effects in a CLPM depend on the time interval between assessments, eventually becoming undetectable at longer intervals. To address this limitation, we incorporate instrumental variables (IVs) into the CLPM with two study waves and two variables. Doing so enables estimation of both the lagged (i.e., \"distal\") effects and the bidirectional cross-sectional (i.e., \"proximal\") effects at each wave. The distal effects reflect Granger-causal influences across time, which decay with increasing time intervals. The proximal effects capture causal influences that accrue over time and can help infer causality when the distal effects become undetectable at longer intervals. Significant proximal effects, with a negligible distal effect, would imply that the time interval is too long to estimate a lagged effect at that time interval using the standard CLPM. Through simulations and an empirical application, we demonstrate the impact of time intervals on causal inference in the CLPM and present modeling strategies to detect causal influences regardless of the time interval in a study. Furthermore, to motivate empirical applications of the proposed model, we highlight the utility and limitations of using genetic variables as IVs in large-scale panel studies.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"342-370"},"PeriodicalIF":5.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11014768/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139736688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unreliable Continuous Treatment Indicators in Propensity Score Analysis.","authors":"Gail A Fish, Walter L Leite","doi":"10.1080/00273171.2023.2235697","DOIUrl":"10.1080/00273171.2023.2235697","url":null,"abstract":"<p><p>Propensity score analyses (PSA) of continuous treatments often operationalize the treatment as a multi-indicator composite, and its composite reliability is unreported. Latent variables or factor scores accounting for this unreliability are seldom used as alternatives to composites. This study examines the effects of the unreliability of indicators of a latent treatment in PSA using the generalized propensity score (GPS). A Monte Carlo simulation study was conducted varying composite reliability, continuous treatment representation, variability of factor loadings, sample size, and number of treatment indicators to assess whether Average Treatment Effect (ATE) estimates differed in their relative bias, Root Mean Squared Error, and coverage rates. Results indicate that low composite reliability leads to underestimation of the ATE of latent continuous treatments, while the number of treatment indicators and variability of factor loadings show little effect on ATE estimates, after controlling for overall composite reliability. The results also show that, in correctly specified GPS models, the effects of low composite reliability can be somewhat ameliorated by using factor scores that were estimated including covariates. An illustrative example is provided using survey data to estimate the effect of teacher adoption of a workbook related to a virtual learning environment in the classroom.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"187-205"},"PeriodicalIF":3.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9965491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Clustering Analysis of Time Series of Affect in Dyadic Interactions","authors":"Samuel D. Aragones, Emilio Ferrer","doi":"10.1080/00273171.2023.2283633","DOIUrl":"https://doi.org/10.1080/00273171.2023.2283633","url":null,"abstract":"An important goal when analyzing multivariate time series is the identification of heterogeneity, both within and across individuals over time. This heterogeneity can represent different ways in wh...","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":"12 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139967472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Alternative Approaches to Estimate Causal Mediated Effects in the Single-Mediator Model","authors":"Diana Alvarez-Bartolo, David P. MacKinnon","doi":"10.1080/00273171.2024.2310395","DOIUrl":"https://doi.org/10.1080/00273171.2024.2310395","url":null,"abstract":"Published in Multivariate Behavioral Research (Ahead of Print, 2024)","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":"1 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139902309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zachary F. Fisher, Younghoon Kim, Vladas Pipiras, Christopher Crawford, Daniel J. Petrie, Michael D. Hunter, Charles F. Geier
{"title":"Structured Estimation of Heterogeneous Time Series","authors":"Zachary F. Fisher, Younghoon Kim, Vladas Pipiras, Christopher Crawford, Daniel J. Petrie, Michael D. Hunter, Charles F. Geier","doi":"10.1080/00273171.2023.2283837","DOIUrl":"https://doi.org/10.1080/00273171.2023.2283837","url":null,"abstract":"How best to model structurally heterogeneous processes is a foundational question in the social, health and behavioral sciences. Recently, Fisher et al. introduced the multi-VAR approach for simult...","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":"36 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139948810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Assessing Fit in Common Factor Models Using Empirical Moment Functions","authors":"Youjin Sung, Yang Liu","doi":"10.1080/00273171.2024.2310421","DOIUrl":"https://doi.org/10.1080/00273171.2024.2310421","url":null,"abstract":"Published in Multivariate Behavioral Research (Ahead of Print, 2024)","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":"26 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139756385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}