Bayesian Analysis of Multi-Factorial Experimental Designs Using SEM.

IF 5.3 3区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Multivariate Behavioral Research Pub Date : 2024-07-01 Epub Date: 2024-07-10 DOI:10.1080/00273171.2024.2315557
Benedikt Langenberg, Jonathan L Helm, Axel Mayer
{"title":"Bayesian Analysis of Multi-Factorial Experimental Designs Using SEM.","authors":"Benedikt Langenberg, Jonathan L Helm, Axel Mayer","doi":"10.1080/00273171.2024.2315557","DOIUrl":null,"url":null,"abstract":"<p><p>Latent repeated measures ANOVA (L-RM-ANOVA) has recently been proposed as an alternative to traditional repeated measures ANOVA. L-RM-ANOVA builds upon structural equation modeling and enables researchers to investigate interindividual differences in main/interaction effects, examine custom contrasts, incorporate a measurement model, and account for missing data. However, L-RM-ANOVA uses maximum likelihood and thus cannot incorporate prior information and can have poor statistical properties in small samples. We show how L-RM-ANOVA can be used with Bayesian estimation to resolve the aforementioned issues. We demonstrate how to place informative priors on model parameters that constitute main and interaction effects. We further show how to place weakly informative priors on standardized parameters which can be used when no prior information is available. We conclude that Bayesian estimation can lower Type 1 error and bias, and increase power and efficiency when priors are chosen adequately. We demonstrate the approach using a real empirical example and guide the readers through specification of the model. We argue that ANOVA tables and incomplete descriptive statistics are not sufficient information to specify informative priors, and we identify which parameter estimates should be reported in future research; thereby promoting cumulative research.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"716-737"},"PeriodicalIF":5.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multivariate Behavioral Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/00273171.2024.2315557","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Latent repeated measures ANOVA (L-RM-ANOVA) has recently been proposed as an alternative to traditional repeated measures ANOVA. L-RM-ANOVA builds upon structural equation modeling and enables researchers to investigate interindividual differences in main/interaction effects, examine custom contrasts, incorporate a measurement model, and account for missing data. However, L-RM-ANOVA uses maximum likelihood and thus cannot incorporate prior information and can have poor statistical properties in small samples. We show how L-RM-ANOVA can be used with Bayesian estimation to resolve the aforementioned issues. We demonstrate how to place informative priors on model parameters that constitute main and interaction effects. We further show how to place weakly informative priors on standardized parameters which can be used when no prior information is available. We conclude that Bayesian estimation can lower Type 1 error and bias, and increase power and efficiency when priors are chosen adequately. We demonstrate the approach using a real empirical example and guide the readers through specification of the model. We argue that ANOVA tables and incomplete descriptive statistics are not sufficient information to specify informative priors, and we identify which parameter estimates should be reported in future research; thereby promoting cumulative research.

利用 SEM 对多因素实验设计进行贝叶斯分析。
最近有人提出了潜变量重复测量方差分析(L-RM-ANOVA),作为传统重复测量方差分析的替代方法。L-RM-ANOVA 建立在结构方程模型的基础上,使研究人员能够调查主效应/交互效应的个体间差异、检查自定义对比、纳入测量模型并考虑缺失数据。然而,L-RM-ANOVA 使用最大似然法,因此无法纳入先验信息,而且在小样本中统计特性较差。我们展示了如何将 L-RM-ANOVA 与贝叶斯估计相结合来解决上述问题。我们演示了如何在构成主效应和交互效应的模型参数上放置信息先验。我们还进一步展示了如何在标准化参数上设置弱信息先验,这可以在没有先验信息的情况下使用。我们的结论是,贝叶斯估计可以降低 1 类误差和偏差,并在充分选择先验的情况下提高功率和效率。我们用一个真实的经验例子来演示这种方法,并指导读者完成模型的规范化。我们认为,方差分析表和不完整的描述性统计信息不足以指定有参考价值的先验信息,我们还确定了在未来的研究中应报告哪些参数估计,从而促进累积性研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Multivariate Behavioral Research
Multivariate Behavioral Research 数学-数学跨学科应用
CiteScore
7.60
自引率
2.60%
发文量
49
审稿时长
>12 weeks
期刊介绍: Multivariate Behavioral Research (MBR) publishes a variety of substantive, methodological, and theoretical articles in all areas of the social and behavioral sciences. Most MBR articles fall into one of two categories. Substantive articles report on applications of sophisticated multivariate research methods to study topics of substantive interest in personality, health, intelligence, industrial/organizational, and other behavioral science areas. Methodological articles present and/or evaluate new developments in multivariate methods, or address methodological issues in current research. We also encourage submission of integrative articles related to pedagogy involving multivariate research methods, and to historical treatments of interest and relevance to multivariate research methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信