Evaluating Contextual Models for Intensive Longitudinal Data in the Presence of Noise.

IF 5.3 3区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Anja F Ernst, Eva Ceulemans, Laura F Bringmann, Janne Adolf
{"title":"Evaluating Contextual Models for Intensive Longitudinal Data in the Presence of Noise.","authors":"Anja F Ernst, Eva Ceulemans, Laura F Bringmann, Janne Adolf","doi":"10.1080/00273171.2024.2436420","DOIUrl":null,"url":null,"abstract":"<p><p>Nowadays research into affect frequently employs intensive longitudinal data to assess fluctuations in daily emotional experiences. The resulting data are often analyzed with moderated autoregressive models to capture the influences of contextual events on the emotion dynamics. The presence of noise (e.g., measurement error) in the measures of the contextual events, however, is commonly ignored in these models. Disregarding noise in these covariates when it is present may result in biased parameter estimates and wrong conclusions drawn about the underlying emotion dynamics. In a simulation study we evaluate the estimation accuracy, assessed in terms of bias and variance, of different moderated autoregressive models in the presence of noise in the covariate. We show that estimation accuracy decreases when the amount of noise in the covariate increases. We also show that this bias is magnified by a larger effect of the covariate, a slower switching frequency of the covariate, a discrete rather than a continuous covariate, and constant rather than occasional noise in the covariate. We also show that the bias that results from a noisy covariate does not decrease when the number of observations increases. We end with a few recommendations for applying moderated autoregressive models based on our simulation.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"1-21"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multivariate Behavioral Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/00273171.2024.2436420","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays research into affect frequently employs intensive longitudinal data to assess fluctuations in daily emotional experiences. The resulting data are often analyzed with moderated autoregressive models to capture the influences of contextual events on the emotion dynamics. The presence of noise (e.g., measurement error) in the measures of the contextual events, however, is commonly ignored in these models. Disregarding noise in these covariates when it is present may result in biased parameter estimates and wrong conclusions drawn about the underlying emotion dynamics. In a simulation study we evaluate the estimation accuracy, assessed in terms of bias and variance, of different moderated autoregressive models in the presence of noise in the covariate. We show that estimation accuracy decreases when the amount of noise in the covariate increases. We also show that this bias is magnified by a larger effect of the covariate, a slower switching frequency of the covariate, a discrete rather than a continuous covariate, and constant rather than occasional noise in the covariate. We also show that the bias that results from a noisy covariate does not decrease when the number of observations increases. We end with a few recommendations for applying moderated autoregressive models based on our simulation.

在存在噪声的情况下评估密集纵向数据的情境模型。
目前,对情绪的研究经常使用密集的纵向数据来评估日常情绪体验的波动。由此产生的数据通常采用调节自回归模型进行分析,以捕捉情境事件对情绪动态的影响。然而,这些模型通常忽略了背景事件测量中存在的噪声(如测量误差)。如果忽略这些协变量中存在的噪声,可能会导致参数估计偏差,并对潜在的情绪动态得出错误的结论。在一项模拟研究中,我们从偏差和方差的角度评估了存在协变量噪声时不同缓和自回归模型的估计精度。我们发现,当协变量中的噪声增加时,估计精度会降低。我们还表明,协变量的影响越大、协变量的切换频率越慢、协变量是离散的而不是连续的、协变量中的噪声是恒定的而不是偶尔出现的,这种偏差就越大。我们还表明,当观测数据数量增加时,噪声协变量导致的偏差并不会减少。最后,我们根据模拟结果提出了一些应用节制自回归模型的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Multivariate Behavioral Research
Multivariate Behavioral Research 数学-数学跨学科应用
CiteScore
7.60
自引率
2.60%
发文量
49
审稿时长
>12 weeks
期刊介绍: Multivariate Behavioral Research (MBR) publishes a variety of substantive, methodological, and theoretical articles in all areas of the social and behavioral sciences. Most MBR articles fall into one of two categories. Substantive articles report on applications of sophisticated multivariate research methods to study topics of substantive interest in personality, health, intelligence, industrial/organizational, and other behavioral science areas. Methodological articles present and/or evaluate new developments in multivariate methods, or address methodological issues in current research. We also encourage submission of integrative articles related to pedagogy involving multivariate research methods, and to historical treatments of interest and relevance to multivariate research methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信