aBIOTECH最新文献

筛选
英文 中文
Applying conventional and cell-type-specific CRISPR/Cas9 genome editing in legume plants 在豆科植物中应用常规和细胞类型特异性CRISPR/Cas9基因组编辑
IF 5 4区 农林科学
aBIOTECH Pub Date : 2024-12-16 DOI: 10.1007/s42994-024-00190-4
Jin-Peng Gao, Yangyang Su, Suyu Jiang, Wenjie Liang, Zhijun Lou, Florian Frugier, Ping Xu, Jeremy D. Murray
{"title":"Applying conventional and cell-type-specific CRISPR/Cas9 genome editing in legume plants","authors":"Jin-Peng Gao,&nbsp;Yangyang Su,&nbsp;Suyu Jiang,&nbsp;Wenjie Liang,&nbsp;Zhijun Lou,&nbsp;Florian Frugier,&nbsp;Ping Xu,&nbsp;Jeremy D. Murray","doi":"10.1007/s42994-024-00190-4","DOIUrl":"10.1007/s42994-024-00190-4","url":null,"abstract":"<div><p>The advent of genome editing technologies, particularly CRISPR/Cas9, has significantly advanced the generation of legume mutants for reverse genetic studies and understanding the mechanics of the rhizobial symbiosis. The legume–rhizobia symbiosis is crucial for sustainable agriculture, enhancing nitrogen fixation and improving soil fertility. Numerous genes with a symbiosis-specific expression have been identified, sometimes exclusively expressed in cells forming infection threads or in nitrogen-fixing nodule cells. Typically, mutations in these genes do not affect plant growth. However, in some instances, germline homozygous mutations can be lethal or result in complex pleiotropic phenotypes that are challenging to interpret. To address this issue, a rhizobia-inducible and cell-type-specific CRISPR/Cas9 strategy was developed to knock-out genes in specific legume transgenic root tissues. In this review, we discuss recent advancements in legume genome editing, highlighting the cell-type-specific CRISPR system and its crucial applications in symbiotic nitrogen fixation and beyond.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"6 2","pages":"346 - 360"},"PeriodicalIF":5.0,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12238430/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144610294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MHZ3: a key regulator of ethylene signaling in rice MHZ3:水稻乙烯信号的关键调控因子
IF 4.6 4区 农林科学
aBIOTECH Pub Date : 2024-12-06 DOI: 10.1007/s42994-024-00189-x
Arif Ali Khattak, Yingshan Huang, Muhammad Afzal, Xiaolin Wang
{"title":"MHZ3: a key regulator of ethylene signaling in rice","authors":"Arif Ali Khattak,&nbsp;Yingshan Huang,&nbsp;Muhammad Afzal,&nbsp;Xiaolin Wang","doi":"10.1007/s42994-024-00189-x","DOIUrl":"10.1007/s42994-024-00189-x","url":null,"abstract":"<div><p>The plant hormone ethylene regulates plant growth, development, and stress responses. Recent studies on early signaling events following ethylene perception in rice (<i>Oryza sativa</i>) have identified MAO HU ZI 3 (MHZ3) as a stabilizer of the ethylene receptors ETHYLENE RESPONSE SENSOR 2 (OsERS2) and ETHYLENE RECEPTOR 2 (OsETR2). MHZ3 ensures the interaction of these receptors with CONSTITUTIVE TRIPLE RESPONSE 2 (OsCTR2), thereby maintaining OsCTR2 activity. Ethylene treatment disrupts the interactions within the MHZ3/receptors/OsCTR2 protein complex, leading to decreased OsCTR2 phosphorylation and the initiation of downstream signaling. Recent studies have established MHZ3 as the primary regulator and switch for OsCTR2 phosphorylation. In this review, we explore the role of MHZ3 in regulating ethylene signaling and highlight its effects on plant growth, development, and stress responses at the plant holobiont level.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"6 1","pages":"133 - 138"},"PeriodicalIF":4.6,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143564391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stable plastid transformation in kiwifruit (Actinidia chinensis) 猕猴桃稳定质体转化的研究
IF 4.6 4区 农林科学
aBIOTECH Pub Date : 2024-11-28 DOI: 10.1007/s42994-024-00186-0
Qiqi Chen, Yuyong Wu, Yanchang Wang, Jiang Zhang, Shengchun Li
{"title":"Stable plastid transformation in kiwifruit (Actinidia chinensis)","authors":"Qiqi Chen,&nbsp;Yuyong Wu,&nbsp;Yanchang Wang,&nbsp;Jiang Zhang,&nbsp;Shengchun Li","doi":"10.1007/s42994-024-00186-0","DOIUrl":"10.1007/s42994-024-00186-0","url":null,"abstract":"<div><p>Plastid transformation offers valuable benefits in plant biotechnology, such as high-level transgene expression and the absence of gene silencing. Here we describe the first protocol of a plastid transformation system for a woody vine (liana) kiwifruit (<i>Actinidia chinensis</i>). The transgenic DNA carries a spectinomycin-resistance gene (<i>aadA</i>) cassette and a green fluorescent protein (<i>GFP</i>) reporter gene cassette, flanked by two adjacent kiwifruit plastid genome sequences, thereby allowing targeted insertion between the <i>trnfM</i> and <i>trnG</i> genes. Six spectinomycin-resistant shoots were obtained out of 12 plates subjected to bombardment, and two were positive events, confirmed through PCR and Southern blot analyses. The GFP was localized to plastids as monitored by confocal laser scanning microscopy and reached 2.5% of leaf total soluble protein. Success in kiwifruit extends transplastomic technology of woody species beyond poplar, and will provide an attractive biosynthetic chassis for molecular farming.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"6 1","pages":"72 - 80"},"PeriodicalIF":4.6,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-024-00186-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143564554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of an RNA virus vector for non-transgenic genome editing in tobacco and generation of berberine bridge enzyme-like mutants with reduced nicotine content 烟草非转基因基因组编辑RNA病毒载体的研制和尼古丁含量降低的小檗碱桥酶样突变体的产生
IF 4.6 4区 农林科学
aBIOTECH Pub Date : 2024-11-22 DOI: 10.1007/s42994-024-00188-y
Haiying Xiang, Binhuan Chen, Shuo Wang, Wanli Zeng, Jiarui Jiang, Weisong Kong, Haitao Huang, Qili Mi, Shuang Ni, Qian Gao, Zhenghe Li
{"title":"Development of an RNA virus vector for non-transgenic genome editing in tobacco and generation of berberine bridge enzyme-like mutants with reduced nicotine content","authors":"Haiying Xiang,&nbsp;Binhuan Chen,&nbsp;Shuo Wang,&nbsp;Wanli Zeng,&nbsp;Jiarui Jiang,&nbsp;Weisong Kong,&nbsp;Haitao Huang,&nbsp;Qili Mi,&nbsp;Shuang Ni,&nbsp;Qian Gao,&nbsp;Zhenghe Li","doi":"10.1007/s42994-024-00188-y","DOIUrl":"10.1007/s42994-024-00188-y","url":null,"abstract":"<div><p>Tobacco (<i>Nicotiana tabacum</i>) plants synthesize the psychoactive pyridine alkaloid nicotine, which has sparked growing interest in reducing nicotine levels through genome editing aiming at inactivating key biosynthetic genes. Although stable transformation-mediated genome editing is effective in tobacco, its polyploid nature complicates the complete knockout of genes and the segregation of transgenes from edited plants. In this study, we developed a non-transgenic genome editing method in tobacco by delivering the CRISPR/Cas machinery via an engineered negative-strand RNA rhabdovirus vector, followed by the regeneration of mutant plants through tissue culture. Using this method, we targeted six <i>berberine bridge enzyme-like protein</i> (<i>BBL</i>) family genes for mutagenesis, which are implicated in the last steps of pyridine alkaloid biosynthesis, in the commercial tobacco cultivar Hongda. We generated a panel of 16 mutant lines that were homozygous for mutations in various combinations of <i>BBL</i> genes. Alkaloid profiling revealed that lines homozygous for <i>BBLa</i> and <i>BBLb</i> mutations exhibited drastically reduced nicotine levels, while other <i>BBL</i> members played a minor role in nicotine synthesis. The decline of nicotine content in these lines was accompanied by reductions in anatabine and cotinine levels but increases in nornicotine and its derivative myosmine. Preliminary agronomic evaluation identified two low-nicotine lines with growth phenotypes comparable to those of wild-type plants under greenhouse and field conditions. Our work provides potentially valuable genetic materials for breeding low-nicotine tobacco and enhances our understanding of alkaloid biosynthesis.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 4","pages":"449 - 464"},"PeriodicalIF":4.6,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-024-00188-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142789188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Developing a pipeline for identification, characterization and molecular editing of cis-regulatory elements: a case study in potato 开发顺式调控元件的鉴定、表征和分子编辑管道:以马铃薯为例
IF 4.6 4区 农林科学
aBIOTECH Pub Date : 2024-10-30 DOI: 10.1007/s42994-024-00185-1
Min Wan, Handan Xie, Hongwei Guo, Shenglin Jing, Deying Zeng, Bing Li, Bo Zhu, Zixian Zeng
{"title":"Developing a pipeline for identification, characterization and molecular editing of cis-regulatory elements: a case study in potato","authors":"Min Wan,&nbsp;Handan Xie,&nbsp;Hongwei Guo,&nbsp;Shenglin Jing,&nbsp;Deying Zeng,&nbsp;Bing Li,&nbsp;Bo Zhu,&nbsp;Zixian Zeng","doi":"10.1007/s42994-024-00185-1","DOIUrl":"10.1007/s42994-024-00185-1","url":null,"abstract":"<div><p>Crop breeding requires a balance of tradeoffs among key agronomic traits caused by gene pleiotropy. The molecular manipulation of genes can effectively improve target traits, but this may not reduce gene pleiotropy, potentially leading to undesirable traits or even lethal conditions. However, molecular editing of <i>cis</i>-regulatory elements (CREs) of target genes may facilitate the dissection of gene pleiotropy to fine-tune gene expression. In this study, we developed a pipeline, in potato, which employs open chromatin to predict candidate CREs, along with both transient and genetic assays to validate the function of CREs and CRISPR/Cas9 to edit candidate CREs. We used <i>StCDF1</i> as an example, a key gene for potato tuberization and identified a 288 bp-core promoter region, which showed photoperiodic inducibility. A homozygous CRISPR/Cas9-editing line was established, with two deletions in the core promoter, which displayed a reduced expression level, resulting in late tuberization under both long-day and short-day conditions. This pipeline provides an alternative pathway to improve a specific trait with limited downside on other phenotypes.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"6 1","pages":"91 - 96"},"PeriodicalIF":4.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-024-00185-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143564560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking epigenetic breeding potential in tomato and potato 释放番茄和马铃薯的表观遗传育种潜力
IF 4.6 4区 农林科学
aBIOTECH Pub Date : 2024-10-23 DOI: 10.1007/s42994-024-00184-2
Pingxian Zhang, Yuehui He, Sanwen Huang
{"title":"Unlocking epigenetic breeding potential in tomato and potato","authors":"Pingxian Zhang,&nbsp;Yuehui He,&nbsp;Sanwen Huang","doi":"10.1007/s42994-024-00184-2","DOIUrl":"10.1007/s42994-024-00184-2","url":null,"abstract":"<div><p>Tomato (<i>Solanum lycopersicum</i>) and potato (<i>Solanum tuberosum</i>), two integral crops within the nightshade family, are crucial sources of nutrients and serve as staple foods worldwide. Molecular genetic studies have significantly advanced our understanding of their domestication, evolution, and the establishment of key agronomic traits. Recent studies have revealed that epigenetic modifications act as “molecular switches”, crucially regulating phenotypic variations essential for traits such as fruit ripening in tomatoes and tuberization in potatoes. This review summarizes the latest findings on the regulatory mechanisms of epigenetic modifications in these crops and discusses the integration of biotechnology and epigenomics to enhance breeding strategies. By highlighting the role of epigenetic control in augmenting crop yield and adaptation, we underscores its potential to address the challenges posed by a growing global population as well as changing climate.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 4","pages":"507 - 518"},"PeriodicalIF":4.6,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-024-00184-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142789229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thiophanate-methyl and its major metabolite carbendazim weaken rhizobacteria-mediated defense responses in cucumbers against Fusarium wilt 甲基硫磷及其主要代谢物多菌灵削弱根杆菌介导的黄瓜对枯萎病的防御反应
IF 4.6 4区 农林科学
aBIOTECH Pub Date : 2024-10-16 DOI: 10.1007/s42994-024-00181-5
Kai Cui, Xiaoming Xia, Youwei Wang, Yueli Zhang, Ying Zhang, Junli Cao, Jun Xu, Fengshou Dong, Xingang Liu, Xinglu Pan, Yongquan Zheng, Xiaohu Wu
{"title":"Thiophanate-methyl and its major metabolite carbendazim weaken rhizobacteria-mediated defense responses in cucumbers against Fusarium wilt","authors":"Kai Cui,&nbsp;Xiaoming Xia,&nbsp;Youwei Wang,&nbsp;Yueli Zhang,&nbsp;Ying Zhang,&nbsp;Junli Cao,&nbsp;Jun Xu,&nbsp;Fengshou Dong,&nbsp;Xingang Liu,&nbsp;Xinglu Pan,&nbsp;Yongquan Zheng,&nbsp;Xiaohu Wu","doi":"10.1007/s42994-024-00181-5","DOIUrl":"10.1007/s42994-024-00181-5","url":null,"abstract":"<div><p>The effect of fungicides on the plant-rhizosphere microbiome is a subject of ongoing debate, but whether any alteration in the rhizosphere microbiome could affect plant health is an issue that has not been thoroughly investigated. To address this deficiency, we analyzed the rhizosphere microbiome of wilt disease—resistant and disease-susceptible cucumber cultivars to determine whether (and which) plant-associated microorganisms have a role in disease resistance. We further assessed whether the fungicides thiophanate-methyl and carbendazim affect the rhizosphere microbiome, which may contribute to the plant’s immune response. Based on results acquired with both radicle-inoculation and soil-inoculation methods, cultivars Longyuanxiuchun (LYXC) and Shuyan2 (SY2) were identified as being disease resistant, whereas Zhongnong6 (ZN6) and Zhongnong38 (ZN38) were susceptible. The microbiome structure differed substantially between the resistant and susceptible plants, with LYXC and SY2 each having a significantly greater Shannon index than Zhongnong38. These results revealed that the disease-resistant cucumber cultivars recruited more beneficial bacteria, i.e., <i>Bacillus</i>, in their rhizosphere soil; as such, <i>Bacillus</i> was identified as a keystone genus in the microbial co-occurrence network. Thus, the presence of <i>Bacillus</i> may help cucumbers defend against fungal pathogens within the rhizosphere. <i>Bacillus subtilis</i> strain LD15, which was isolated from LYXC rhizosphere soil, could suppress pathogen growth, in vitro, and reduce disease severity in pot assays. Moreover, evidence also confirmed the accumulation of LD1 in the rhizosphere soil of resistant cucumber cultivars. For LYXC, application of thiophanate-methyl or carbendazim altered the microbiome structure, decreased bacterial diversity, and reduced the abundance of <i>Bacillus</i> species. Finally, pot assays verified that fungicide application decreased the proportion of LD15 in rhizosphere soil. From a microbial perspective, thiophanate-methyl and carbendazim may weaken the rhizobacteria-mediated defense response of cucumbers against cucumber Fusarium wilt disease. Our findings reveal a role for the rhizosphere microbiome in protecting plants from pathogens and constitute a reference for assessing the ecotoxicological risk of pesticides to non-target soil microorganisms.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 4","pages":"417 - 430"},"PeriodicalIF":4.6,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-024-00181-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142789318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional retrogression of LOFSEPs in specifying floral organs in barley lofsep在大麦花器官中的功能退化
IF 4.6 4区 农林科学
aBIOTECH Pub Date : 2024-10-15 DOI: 10.1007/s42994-024-00182-4
Chaoqun Shen, Xiujuan Yang, Duoxiang Wang, Gang Li, Matthew R. Tucker
{"title":"Functional retrogression of LOFSEPs in specifying floral organs in barley","authors":"Chaoqun Shen,&nbsp;Xiujuan Yang,&nbsp;Duoxiang Wang,&nbsp;Gang Li,&nbsp;Matthew R. Tucker","doi":"10.1007/s42994-024-00182-4","DOIUrl":"10.1007/s42994-024-00182-4","url":null,"abstract":"<div><p>The barley genome encodes a complete set of MADS-box proteins sharing homology with components of the ABCDE model, which explains the molecular basis of floral organ identity in angiosperm flowers. Although the E-class members are universally expressed across floral whorls and crucial for flower development in Arabidopsis and rice, the functional role of the barley E-class LOFSEP subfamily (comprising MADS1, MADS5, and MADS34) remains elusive, particularly during spikelet formation. Here, we characterize the single, double and triple <i>lofsep</i> mutants in barley in an attempt to overcome the anticipated genetic redundancy. Surprisingly, loss of function of all LOFSEP members only disturbs lemma development, either converting this hull organ into a leaf-like structure or reducing its size. The inner organs, including lodicules, anthers and pistil remain unaffected. A systematic interrogation of how ABCDE class genes are affected in all whorls of the mutants was undertaken. Generally, in the lemma and palea of the <i>lofsep</i> mutants, A- and E-class genes are hyperactivated, B- and C- classes are slightly repressed, and D-class genes show unchanged expression in these inner organs. Intriguingly, loss of function of <i>MADS6</i>, an <i>AGL6</i> member closely related to the E-class genes, leads to most organs being transformed into lemma-like organs with new spikelets generated from the center of the flower. Contrasting with rice, these findings suggest barley LOFSEPs may have regressed in determining floral organ identity, and this could be partially compensated by HvMADS6.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"6 1","pages":"1 - 11"},"PeriodicalIF":4.6,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-024-00182-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143564328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A high-throughput protocol for testing heat-stress tolerance in pollen 花粉耐热性测试的高通量方案
IF 4.6 4区 农林科学
aBIOTECH Pub Date : 2024-10-14 DOI: 10.1007/s42994-024-00183-3
Chenchen Zhao, Abu Bakar Siddique, Ce Guo, Sergey Shabala, Chengdao Li, Zhonghua Chen, Rajeev Varshney, Meixue Zhou
{"title":"A high-throughput protocol for testing heat-stress tolerance in pollen","authors":"Chenchen Zhao,&nbsp;Abu Bakar Siddique,&nbsp;Ce Guo,&nbsp;Sergey Shabala,&nbsp;Chengdao Li,&nbsp;Zhonghua Chen,&nbsp;Rajeev Varshney,&nbsp;Meixue Zhou","doi":"10.1007/s42994-024-00183-3","DOIUrl":"10.1007/s42994-024-00183-3","url":null,"abstract":"<div><p>Viable pollen is crucial for fertilization, but pollen is generally highly susceptible to heat stress. A quick, reliable method for testing the heat-stress tolerance of pollen is needed to improve the heat-stress tolerance in plants, but current methods require considerable space and labor. In addition, many such methods only test tolerance to a single constant temperature, making it time-consuming to screen heat tolerance over a wide temperature range and to examine the dynamics of pollen viability at different temperatures. To address this issue, we aimed to: (1) develop an easy, reliable method for measuring pollen viability at different temperatures; and (2) identify the best temperature range for screening pollen with high heat-stress tolerance. We harvested mature pollen from wheat (<i>Triticum aestivum</i>) plants and transferred it to a 96-well plate filled with liquid medium containing sucrose. We placed the plate in a PCR machine operating under a gradient PCR program to simultaneously test a range of temperatures. After incubating the pollen for 4 h, at temperatures ranging from 21.9 to 47 °C, we examined the pollen grains under a light microscope and employed a specific image analysis pipeline to assess the effects of temperature on pollen morphology, germination, and tube growth. This method facilitated the high-throughput screening of many pollen samples, enabling rapid, reliable, and precise analysis of pollen viability in response to temperature. Our approach should be applicable to other plant species and could be used to identify quantitative trait loci or genes influencing heat stress tolerance in pollen for breeding programs.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"6 1","pages":"63 - 71"},"PeriodicalIF":4.6,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-024-00183-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143564315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: The RUBY reporter for visual selection in soybean genome editing 更正:大豆基因组编辑中目视选择的RUBY报告
IF 4.6 4区 农林科学
aBIOTECH Pub Date : 2024-10-02 DOI: 10.1007/s42994-024-00156-6
Li Chen, Yupeng Cai, Xiaoqian Liu, Weiwei Yao, Shuiqing Wu, Wensheng Hou
{"title":"Correction: The RUBY reporter for visual selection in soybean genome editing","authors":"Li Chen,&nbsp;Yupeng Cai,&nbsp;Xiaoqian Liu,&nbsp;Weiwei Yao,&nbsp;Shuiqing Wu,&nbsp;Wensheng Hou","doi":"10.1007/s42994-024-00156-6","DOIUrl":"10.1007/s42994-024-00156-6","url":null,"abstract":"","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"5 4","pages":"519 - 519"},"PeriodicalIF":4.6,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-024-00156-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142789196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信