Chem CatalysisPub Date : 2025-07-17DOI: 10.1016/j.checat.2025.101440
Linlin Liu, ChungHyuk Lee
{"title":"Scalable single-atom catalyst for high-performing and durable water electrolyzers","authors":"Linlin Liu, ChungHyuk Lee","doi":"10.1016/j.checat.2025.101440","DOIUrl":"https://doi.org/10.1016/j.checat.2025.101440","url":null,"abstract":"In the May 28 issue of the <em>Journal of the American Chemical Society</em>, Xue et al. report a single-atom Mn-integrated RuO<sub>2</sub> electrocatalyst that achieves an efficient oxygen evolution reaction across a broad pH range while maintaining remarkable stability over 1,000 h. This Mn-modified catalyst exhibits high stability and activity in both proton-exchange membrane and alkaline water electrolysis.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"24 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144645591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chem CatalysisPub Date : 2025-07-17DOI: 10.1016/j.checat.2025.101444
Yazhou Zhou, Guangbo Chen
{"title":"MOF@POM hybrid sets a new benchmark for alkaline water oxidation","authors":"Yazhou Zhou, Guangbo Chen","doi":"10.1016/j.checat.2025.101444","DOIUrl":"https://doi.org/10.1016/j.checat.2025.101444","url":null,"abstract":"In the April 25 issue of <em>Science</em>, Yue et al. present an innovative MOF@POM hybrid catalyst, which they designed by grafting CoFe-MOFs onto nickel-bridged POMs. The resulting catalyst sets a new benchmark for efficient and durable water oxidation by exhibiting outstanding performance in an anion-exchange membrane water electrolyzer.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"80 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144645623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chem CatalysisPub Date : 2025-07-15DOI: 10.1016/j.checat.2025.101460
Kimberly A.W. Reid, Randy Sutio, Jack M. Ranani, Maksym Pavlenko, Brennah E. Slaney, Christophe Allais, Johnny W. Lee, Christopher Sandford
{"title":"A bifunctional boronic acid/phosphorus(V) organocatalyst for the direct room-temperature amidation of carboxylic acids","authors":"Kimberly A.W. Reid, Randy Sutio, Jack M. Ranani, Maksym Pavlenko, Brennah E. Slaney, Christophe Allais, Johnny W. Lee, Christopher Sandford","doi":"10.1016/j.checat.2025.101460","DOIUrl":"https://doi.org/10.1016/j.checat.2025.101460","url":null,"abstract":"The sustainable synthesis of amide bonds under mild conditions is a key green chemistry target for the pharmaceutical process industry and is highlighted as one of the ten goals of the American Chemical Society’s Green Chemistry Institute Pharmaceutical Roundtable. Here, we report an organocatalyst that can achieve the synthesis of amides at room temperature. The catalyst includes both boronic acid and phosphine oxide functionalities, which operate in concert to facilitate substrate activation. Unlike that of other arylboronic acid catalysts, the monomeric mechanism proceeds via a redox-neutral phosphorus(V) cycle, where the adjacent boronic acid is key to room-temperature activity.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"203 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144630095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chem CatalysisPub Date : 2025-07-15DOI: 10.1016/j.checat.2025.101459
Ali Kamali, Joshua M. Little, Song Luo, Amy Chen, Akash Warty, Antara Bhowmick, Jorge Moncada, Evan P. Jahrman, Brandon C. Vance, Jong K. Keum, Taylor J. Woehl, Po-Yen Chen, Dionisios G. Vlachos, Dongxia Liu
{"title":"Plastic-waste hydrogenolysis over two-dimensional MXene-supported ruthenium catalysts with tunable interlayer spacing","authors":"Ali Kamali, Joshua M. Little, Song Luo, Amy Chen, Akash Warty, Antara Bhowmick, Jorge Moncada, Evan P. Jahrman, Brandon C. Vance, Jong K. Keum, Taylor J. Woehl, Po-Yen Chen, Dionisios G. Vlachos, Dongxia Liu","doi":"10.1016/j.checat.2025.101459","DOIUrl":"https://doi.org/10.1016/j.checat.2025.101459","url":null,"abstract":"The hydrogenolysis of plastics is limited by active-site inaccessibility and inefficient mass transport of bulky polymer chains. To overcome these challenges, this work developed two-dimensional MXene-supported Ru (Ru@MXene) catalysts. Lyophilization of a solution containing dispersed MXene sheets and Ru precursors enabled the confinement of Ru species within the MXene interlayers, which act as pillars to expand the interlayer spacing. Building on this, a silica-pillared MXene-supported Ru (Ru@P-MXene) with even larger interlayer spacing exhibited a reaction rate of 914.9 g<sub>C5–C35</sub> g<sub>Ru</sub><sup>−1</sup> h<sup>−1</sup> for the hydrogenolysis of low-density polyethylene (LDPE) into valuable liquid chemicals (e.g., C<sub>5</sub>–C<sub>35</sub>). A comparison of product yields between Ru@P-MXene and Ru@MXene suggests that elongated Ru particles confined within the MXene support expose their side facets for the reaction. This work demonstrates a new application of MXene in thermochemical catalysis, offering a solution to the challenges of active-site accessibility, mass transport, and reaction confinement in chemical plastic upcycling.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"59 17 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144630097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chem CatalysisPub Date : 2025-07-10DOI: 10.1016/j.checat.2025.101445
Ashutosh Kumar, Jan Taubitz, Fabian Meyer, Nicolas Imstepf, Jiaming Peng, Erika Tassano, Charles Moore, Thomas Lochmann, Radka Snajdrova, Rebecca Buller
{"title":"Streamlining enzyme discovery and development through data analysis and computation","authors":"Ashutosh Kumar, Jan Taubitz, Fabian Meyer, Nicolas Imstepf, Jiaming Peng, Erika Tassano, Charles Moore, Thomas Lochmann, Radka Snajdrova, Rebecca Buller","doi":"10.1016/j.checat.2025.101445","DOIUrl":"https://doi.org/10.1016/j.checat.2025.101445","url":null,"abstract":"Here, we report the development of EnzyMS, a Python-based pipeline for the analysis of high-resolution liquid chromatography-mass spectrometry (LC-MS) data specifically tailored for biocatalysis experiments. Applying EnzyMS to biocatalytic reactions carried out with variants of Fe(II)/α-ketoglutarate-dependent halogenase WelO5∗ on the antifungal macrolide soraphen A, we discovered reaction outcomes that had not been observable when using standard analysis software. Interestingly, we detected a previously unreported selective oxidative demethylation of soraphen A alongside the reported hydroxylations and chlorinations. Building on this finding, a computationally guided protein engineering approach allowed us to identify a WelO5∗ variant that exhibited a 3-fold improved demethylation performance by only creating and testing three predicted variants. In summary, we showcase the utility of the EnzyMS workflow and its potential to enable rapid detection of previously unobserved biocatalytic products and highlight the valuable synergies between data science pipelines and the computational design of enzymes.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"15 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144594853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chem CatalysisPub Date : 2025-07-10DOI: 10.1016/j.checat.2025.101431
Dean J. Tantillo
{"title":"Dynamically controlled kinetic selectivity in reactions promoted by transition metal catalysts","authors":"Dean J. Tantillo","doi":"10.1016/j.checat.2025.101431","DOIUrl":"https://doi.org/10.1016/j.checat.2025.101431","url":null,"abstract":"The importance of non-statistical dynamic effects on reactivity and selectivity for reactions catalyzed by homogeneous transition-metal-containing catalysts is highlighted. Fundamental principles of non-statistical behavior are laid out, examples from the literature are given to illustrate these principles, and guidelines for when to raise the alarm that such effects may be intervening in transition-metal-promoted reactions are provided.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"21 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144594852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chem CatalysisPub Date : 2025-07-08DOI: 10.1016/j.checat.2025.101442
Yu-Fei Ao
{"title":"Machine learning-assisted protein engineering for improving stereoselectivity","authors":"Yu-Fei Ao","doi":"10.1016/j.checat.2025.101442","DOIUrl":"https://doi.org/10.1016/j.checat.2025.101442","url":null,"abstract":"Biocatalysis is a promising approach to asymmetric synthesis; however, the natural substrate specificity of enzymes often limits their stereoselectivity, and thus, protein engineering is essential to improving enzyme performance. This perspective summarizes machine learning-assisted protein engineering for stereoselectivity, focusing on supervised learning models trained on experimental data to uncover correlations between enzyme/substrate descriptors and stereoselectivity. This approach can provide relatively accurate predictions at low computational cost, thereby improving or reversing enzyme stereoselectivity. Despite these advances, challenges remain, such as the lack of reliable stereoselectivity data and limited predictive performance and generalization ability of models. The integration of large amounts of high-quality data, more accurate structural and physicochemical descriptors, and innovative algorithms holds the promise of developing more robust and generalizable models that can predict the stereoselectivity of a wide range of enzymes and substrates. This approach could pave the way for more efficient and sustainable biocatalytic processes in asymmetric synthesis.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"51 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144578172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"π-π interaction-directed asymmetric hydrogenation of sterically unbiased aromatic ketones","authors":"Jingyuan Song, Renwei Xiao, Hui He, Li Wang, Fanping Huang, Menglong Zhao, Donghuang Liu, Shao-Fei Ni, Gen-Qiang Chen, Xumu Zhang","doi":"10.1016/j.checat.2025.101438","DOIUrl":"https://doi.org/10.1016/j.checat.2025.101438","url":null,"abstract":"Transition metal-catalyzed asymmetric hydrogenation of ketones has been well established; however, the asymmetric hydrogenation of sterically unbiased ketones remains a major challenge, primarily due to difficulties in controlling enantioselectivity. Here, we report a highly practical and efficient protocol for the asymmetric hydrogenation of such substrates, delivering chiral cyclic diaryl alcohols (including the baloxavir intermediate) in up to a 99% yield and 99% enantiomer excess (ee). Mechanistic studies show that [Ir(cod)Cl]<sub>2</sub> undergoes intramolecular oxidative C–H activation with an <em>oxa</em>-spirocyclic ligand, forming a rigid, butterfly-shaped Ir–PNNC complex, as confirmed by single-crystal X-ray diffraction. In our understanding, this tetradentate binding both prevents catalyst poisoning by sulfur-containing substrates and maximizes enantioselectivity, aided by crucial π-π interactions (as revealed by density functional theory [DFT] and non-covalent bond interaction [NCI] analyses). The synthetic practicality is demonstrated by gram-scale hydrogenation with excellent stereocontrol, underscoring the potential of this approach for the efficient preparation of valuable enantiopure compounds.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"27 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144547468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stabilization of highly active Ru sites toward acidic water oxidation by dual-atom doping","authors":"Jialin Tang, Qisheng Zeng, Qiu Jiang, Haoyuan Wang, Sunpei Hu, Yuan Ji, Hongliang Zeng, Chunxiao Liu, Hong-Jie Peng, Xu Li, Tingting Zheng, Chih-Wen Pao, Xinyan Liu, Chuan Xia","doi":"10.1016/j.checat.2025.101441","DOIUrl":"https://doi.org/10.1016/j.checat.2025.101441","url":null,"abstract":"Proton exchange membrane (PEM) water splitting is a cutting-edge technology that can produce clean and renewable hydrogen fuel. However, sluggish oxygen evolution reaction (OER) kinetics remain a challenge for the trade-off between catalytic activity and stability in acidic media. Currently, ruthenium dioxide (RuO<sub>2</sub>) materials show great potential for the OER, which still suffers from a major drawback of low durability due to the severe dissolution of metal atoms in acidic electrolytes. Herein, we report a RuO<sub>2</sub> nanoparticle material modified with atomic Co and Pd to enhance OER stability while boosting catalytic activity in acidic environments. We demonstrate that Co atoms facilitate OOH∗ deprotonation, thereby lowering the OER energy barrier, while Pd atoms stabilize the Ru sites by effectively suppressing their over-oxidation and dissolution during the acidic OER.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"70 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144547470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Surface reconstruction of versatile perovskites via in situ nanoparticle engineering for solid oxide cells","authors":"Boshen Xu, Jiufeng Ruan, Pengxi Zhu, Sidong Lei, Hanping Ding, Pei Dong","doi":"10.1016/j.checat.2025.101432","DOIUrl":"https://doi.org/10.1016/j.checat.2025.101432","url":null,"abstract":"Renewable energy conversion is pivotal for decarbonization via a carbon-neutral energy cycle. Solid oxide cells (SOCs) offer efficient energy conversion for power generation, hydrogen production, and CO<sub>2</sub> electrolysis. These devices benefit from favorable thermodynamic and catalytic mechanisms enabled by high-temperature operation. Perovskite oxides are key SOC catalysts due to their tunable lattice structures, which influence electronic properties, defect chemistry, and catalytic activity. Perovskite surface reconstruction attracts much attention as a critical strategy to enhance reaction kinetics by tailoring surface properties and improving electrode performance. This review explores the unique adaptability of perovskite oxides for surface modification, along with the relationships between lattice structures, surface characteristics, and catalytic performance. It highlights methods for atomic-level reconstruction and summarizes recent experimental and theoretical progress, offering insights for designing next-generation SOC catalysts and advancing the application of perovskite oxides in renewable energy.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"19 1","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144521329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}