Thomas M. Groseclose, Erin Kober, Matilda Clark, Benjamin Moore, Ramesh K. Jha, Zoe K. Taylor, Lexy A. Lujan, Gregg T. Beckham, Andrew R. Pickford, Taraka Dale, Hau B. Nguyen
{"title":"Engineering PHL7 for improved poly(ethylene terephthalate) depolymerization via rational design and directed evolution","authors":"Thomas M. Groseclose, Erin Kober, Matilda Clark, Benjamin Moore, Ramesh K. Jha, Zoe K. Taylor, Lexy A. Lujan, Gregg T. Beckham, Andrew R. Pickford, Taraka Dale, Hau B. Nguyen","doi":"10.1016/j.checat.2025.101399","DOIUrl":null,"url":null,"abstract":"Enzymatic depolymerization of poly(ethylene terephthalate) (PET) has emerged as a promising approach for polyester recycling, and, to date, many natural and engineered PET hydrolase enzymes have been reported. For industrial use, PET hydrolases must achieve high depolymerization extent and exhibit excellent thermostability. Here, we engineered a natural PET hydrolase, Polyester Hydrolase Leipzig #7 (PHL7), through rational design and directed evolution using a high-throughput screening platform. Four new enzymes were engineered with enhanced properties compared with the parent enzyme, wild-type PHL7 (PHL7-WT), and other benchmark PET hydrolases, under the tested conditions. In bioreactors, the exemplary engineered enzyme, PHL7-Jemez, exhibited improved ability to depolymerize amorphous PET film compared with PHL7-WT at 2.9% and 20% substrate loadings, with 37% and 270% higher hydrolysis, respectively, after 48 h. This study develops several state-of-the-art PET hydrolases and demonstrates a directed evolution platform to engineer high-performance enzymes, which can accelerate enzyme discovery toward improved biocatalytic recycling.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"34 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2025.101399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Enzymatic depolymerization of poly(ethylene terephthalate) (PET) has emerged as a promising approach for polyester recycling, and, to date, many natural and engineered PET hydrolase enzymes have been reported. For industrial use, PET hydrolases must achieve high depolymerization extent and exhibit excellent thermostability. Here, we engineered a natural PET hydrolase, Polyester Hydrolase Leipzig #7 (PHL7), through rational design and directed evolution using a high-throughput screening platform. Four new enzymes were engineered with enhanced properties compared with the parent enzyme, wild-type PHL7 (PHL7-WT), and other benchmark PET hydrolases, under the tested conditions. In bioreactors, the exemplary engineered enzyme, PHL7-Jemez, exhibited improved ability to depolymerize amorphous PET film compared with PHL7-WT at 2.9% and 20% substrate loadings, with 37% and 270% higher hydrolysis, respectively, after 48 h. This study develops several state-of-the-art PET hydrolases and demonstrates a directed evolution platform to engineer high-performance enzymes, which can accelerate enzyme discovery toward improved biocatalytic recycling.
期刊介绍:
Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.