Surface electron-donor-boosting single-atom nickel sites for CO2 electroreduction in pure water

IF 11.5 Q1 CHEMISTRY, PHYSICAL
Xiaoxiong Huang, Linping Qian, Yujin Ji, Wenzhe Niu, Yuncheng Hu, Liangyao Xue, Jingjing Li, Shuanglong Huang, Jiaqi Zhang, Youyong Li, Bo Zhang
{"title":"Surface electron-donor-boosting single-atom nickel sites for CO2 electroreduction in pure water","authors":"Xiaoxiong Huang, Linping Qian, Yujin Ji, Wenzhe Niu, Yuncheng Hu, Liangyao Xue, Jingjing Li, Shuanglong Huang, Jiaqi Zhang, Youyong Li, Bo Zhang","doi":"10.1016/j.checat.2025.101416","DOIUrl":null,"url":null,"abstract":"The electrocatalytic carbon dioxide reduction reaction (CO<sub>2</sub>RR) in pure water is one of the most promising strategies for avoiding crystallization in conventional electrolytes. Here, we sought to modify the catalyst of dispersed single-atom nickel (Ni) sites on an ultrathin nitrogen-doped carbon nanosheet (Ni–N–C) by using amino groups (Ni–N–C–NH<sub>2</sub>). The obtained Ni–N–C–NH<sub>2</sub> catalysts exhibited a peak turnover frequency of 11.1 s<sup>−1</sup> with &gt;90% CO selectivity and ultrastable durability of 100 h of continuous operation and achieved two to three times greater current density than Ni–N–C. <em>Operando</em> spectroscopic evidence combined with theory studies suggested that the improved CO selectivity originates from the synergistic effect of the amino groups and Ni–N–C. The introduced amino groups with the surface property of the electron donor upshift the <em>d</em>-band center of Ni and favor CO<sub>2</sub> capture and proton-coupled electron transfer, ultimately enabling highly efficient operation of the CO<sub>2</sub>RR on Ni–N–C catalysts.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"54 1","pages":""},"PeriodicalIF":11.5000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2025.101416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The electrocatalytic carbon dioxide reduction reaction (CO2RR) in pure water is one of the most promising strategies for avoiding crystallization in conventional electrolytes. Here, we sought to modify the catalyst of dispersed single-atom nickel (Ni) sites on an ultrathin nitrogen-doped carbon nanosheet (Ni–N–C) by using amino groups (Ni–N–C–NH2). The obtained Ni–N–C–NH2 catalysts exhibited a peak turnover frequency of 11.1 s−1 with >90% CO selectivity and ultrastable durability of 100 h of continuous operation and achieved two to three times greater current density than Ni–N–C. Operando spectroscopic evidence combined with theory studies suggested that the improved CO selectivity originates from the synergistic effect of the amino groups and Ni–N–C. The introduced amino groups with the surface property of the electron donor upshift the d-band center of Ni and favor CO2 capture and proton-coupled electron transfer, ultimately enabling highly efficient operation of the CO2RR on Ni–N–C catalysts.

Abstract Image

纯水中CO2电还原的表面电子供体增强单原子镍位
纯水中的电催化二氧化碳还原反应(CO2RR)是传统电解质中避免结晶的最有前途的策略之一。在这里,我们试图通过氨基(Ni - n- c - nh2)修饰超薄氮掺杂碳纳米片(Ni - n- c)上分散的单原子镍(Ni)位点的催化剂。Ni-N-C - nh2催化剂的峰值周转频率为11.1 s−1,CO选择性为>;90%,连续运行100 h的超稳定耐久性,电流密度比Ni-N-C高2 ~ 3倍。Operando光谱证据结合理论研究表明,CO选择性的提高源于氨基与Ni-N-C的协同作用。引入的具有电子给体表面性质的氨基使Ni的d带中心上移,有利于CO2捕获和质子耦合电子转移,最终使CO2RR在Ni - n-c催化剂上高效运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.50
自引率
6.40%
发文量
0
期刊介绍: Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信