Carolina Ropero-Pérez, Paloma Manzanares, Jose F. Marcos, Sandra Garrigues
{"title":"Agrobacterium tumefaciens-mediated transformation for the genetic modification of the biotechnologically relevant fungus Aspergillus vadensis through synthetic biology","authors":"Carolina Ropero-Pérez, Paloma Manzanares, Jose F. Marcos, Sandra Garrigues","doi":"10.1016/j.crbiot.2024.100178","DOIUrl":"https://doi.org/10.1016/j.crbiot.2024.100178","url":null,"abstract":"<div><p>In the last years, many research efforts have been applied for the development of filamentous fungi as hosts for heterologous protein production. <em>Aspergillus vadensis</em> CBS 113365, a close relative of the industrial workhorse <em>Aspergillus niger</em>, has been suggested as a more suitable cell factory as it does not acidify the culture medium and produces very low levels of secreted proteases. Therefore, efficient methods and tools that allow the genetic manipulation and exploitation of this biotechnologically relevant fungus are needed. To date, only protoplast-mediated transformation and classical cloning strategies have been implemented for <em>A. vadensis</em> genetic modification, which decreases the exploitation capacity of this fungus at the industrial level. In this study, we have adapted and implemented an <em>Agrobacterium tumefaciens-</em>mediated transformation protocol for <em>A. vadensis</em> for the first time, and applied the FungalBraid system to genetically modify this species by means of synthetic biology. As proof of concept, we have successfully complemented and fluorescently labelled a uridine auxotrophic <em>A. vadensis pyrA<sup>-</sup></em> strain and generated <em>A. vadensis</em> mutants carrying the <em>Penicillium expansum</em>-based expression cassette for the heterologous production of the antifungal protein PeAfpA from <em>P. expansum</em>. Even though we have yet to find the conditions that trigger PeAfpA production in this species, the implementation of the ATMT method reported here, along with the application of the FungalBraid system, will greatly aid in this task and will facilitate the exploitation of <em>A. vadensis</em> as a fungal workhorse for protein production for multiple biotechnological applications.</p></div>","PeriodicalId":52676,"journal":{"name":"Current Research in Biotechnology","volume":"7 ","pages":"Article 100178"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590262824000042/pdfft?md5=0a49fe4461640e9825957bfc2ee33df5&pid=1-s2.0-S2590262824000042-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139487663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wanessa S. Mota , Simone S.C. Oliveira , Matheus M. Pereira , Damião P. Souza , Mayara Castro , Pollyanna S. Gomes , Herbert L.M. Guedes , Vinícius F. Souza , André L.S. Santos , Ricardo L.C. Albuquerque-Junior , Juliana C. Cardoso , Cristina Blanco-Llamero , Sona Jain , Eliana B. Souto , Patrícia Severino
{"title":"Isopentyl caffeate as a promising drug for the treatment of leishmaniasis: An in silico and in vivo study","authors":"Wanessa S. Mota , Simone S.C. Oliveira , Matheus M. Pereira , Damião P. Souza , Mayara Castro , Pollyanna S. Gomes , Herbert L.M. Guedes , Vinícius F. Souza , André L.S. Santos , Ricardo L.C. Albuquerque-Junior , Juliana C. Cardoso , Cristina Blanco-Llamero , Sona Jain , Eliana B. Souto , Patrícia Severino","doi":"10.1016/j.crbiot.2024.100209","DOIUrl":"https://doi.org/10.1016/j.crbiot.2024.100209","url":null,"abstract":"<div><p>Leishmaniasis is recognised as the second largest parasitic disease worldwide and yet a neglected disease. The current pharmacological treatments are associated with significant challenges, including high toxicity, high cost and parasitic resistance. Considering the potential of isopentyl caffeate (ICaf) as an anti-leishmanial agent, the present work evaluated the <em>in vivo</em> toxicity of ICaf and the absorption, distribution, metabolism, and excretion (ADME) properties <em>in silico</em>, aiming at the treatment of <em>Leishmania amazonensis</em>. For the <em>in vivo</em> toxicity testing, Swiss mice (<em>Mus musculus</em>) were treated with a single dose of ICaf. During the 14-day evaluation period, the animals underwent assessments including hippocratic screening, weight measurement, as well as histological and hematological evaluations. Analysis of ADME properties of ICaf was conducted to evaluate its pharmacokinetic characteristics and bioavailability. Characteristics, such as molar refractivity through Lipinski's Rule of Five, were identified. The <em>in silico</em> results showed that ICaf is considered to have good oral bioavailability and has potential to be considered as a new drug. From the <em>in vivo</em> toxicity testing, none of the evaluated parameters revealed toxicity of ICaf to the animals when treated intraperitoneally. The <em>in vivo</em> treatment reduced the lesion and the parasite load at the tested doses, corroborating the assumption that ICaf may be a potential pharmacological alternative against <em>L. amazonensis</em>.</p></div>","PeriodicalId":52676,"journal":{"name":"Current Research in Biotechnology","volume":"7 ","pages":"Article 100209"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590262824000352/pdfft?md5=34b6b52f6490ccae56027b2ac7ff33f1&pid=1-s2.0-S2590262824000352-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140536111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Raktim Ghosh , Pinaki Biswas , Abhinaba Chakraborty , Suchetana Pal , Moubonny Das , Somasri Dam
{"title":"A BAR homology domain containing protein, EhABP is the novel interactor of EhAK7, an aurora kinase homolog in E. histolytica","authors":"Raktim Ghosh , Pinaki Biswas , Abhinaba Chakraborty , Suchetana Pal , Moubonny Das , Somasri Dam","doi":"10.1016/j.crbiot.2024.100216","DOIUrl":"https://doi.org/10.1016/j.crbiot.2024.100216","url":null,"abstract":"<div><p>Biomolecular interactions among proteins are fundamental for all cellular functions. The chromosome segregation proteins are the key regulators of inherent functions in the living cells. Aurora kinases have drawn much interest as possible drug targets in higher eukaryotes. The human pathogen, <em>E. histolytica</em> is the causative agent of amoebiasis, and a major health concern in developing countries. However, there is no vaccine against it and the popular drugs- metronidazole, tinidazole etc. show significant side effects in humans. To identify new controlling agents, we must have a thorough knowledge about the cell cycle regulatory proteins of <em>E. histolytica</em>, as many unusual cell cycle events can be found in this parasite, that do not happen in human cells. This study describes the first comprehensive analysis of the interaction between an aurora kinase protein and a BAR homology domain containing protein. Fes/CIP4 and EFC/F-BAR homology domain (FCH) containing protein, EhABP has been identified as a novel interactor of EhAK7, an aurora kinase homolog from <em>E. histolytica</em> by yeast two-hybrid screening against the cDNA library of <em>E. histolytica</em> and their interaction has been proved by <em>in vitro</em> binding assay. Both the N and C-terminus of EhAK7 are responsible for this interaction. We found the reduced expression of EhAK7 and EhABP genes, defects in actin filament organization and irregular-shaped nucleus in the trophozoites treated with an aurora kinase inhibitor VX-680. This indicates that EhAK7 play an important role in the cytokinesis of <em>E. histolytica</em> through the interaction with a BAR homology domain containing protein, EhABP.</p></div>","PeriodicalId":52676,"journal":{"name":"Current Research in Biotechnology","volume":"7 ","pages":"Article 100216"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259026282400042X/pdfft?md5=a34104d85ebf1154fae15c78b59a9016&pid=1-s2.0-S259026282400042X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140644837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"AutoTarget: Disease-Associated druggable target identification via node representation learning in PPI networks","authors":"Hyunseung Kong , Inyoung Kim , Byoung-Tak Zhang","doi":"10.1016/j.crbiot.2024.100260","DOIUrl":"10.1016/j.crbiot.2024.100260","url":null,"abstract":"<div><div>Drug target discovery, a pivotal early stage in drug development, is resource-intensive and crucial for ensuring drug efficacy. This study presents AutoTarget, a novel computational pipeline designed to identify disease-associated druggable targets by applying node representation learning to protein–protein interaction (PPI) networks. AutoTarget uses node2vec + for node classification, incorporating neighborhood context and structural equivalence in PPI networks derived from the STRING database. Data from the Therapeutic Target Database (TTD) and DisGeNET were integrated to identify known drug targets and gene-disease associations, respectively. Each protein is embedded into a 128-dimensional vector space, capturing local network structures and enabling the identification of structurally equivalent proteins. A Naïve Bayes classifier, trained on these embeddings, achieved a recall of 0.90 and an F1 score of 0.79 in predicting potential drug targets. AutoTarget identified 3,979 novel potential druggable target proteins out of 19,333 proteins in the PPI network, which were mapped to 23,363 diseases using DisGeNET. This creates a comprehensive resource for disease-specific drug target exploration. Case studies on triple-negative breast cancer and obesity demonstrated AutoTarget’s capability to identify both established and emerging targets, such as CD44, MAPK3, and GIP. Visualization of embedding vectors using t-SNE revealed clear separations between functional protein families, including nuclear proteins, growth factor receptors, and the G proteins within the kinase proteins. This supports the method’s ability to capture biologically relevant information. However, limitations were noted, including the inability to distinguish between different types of disease-associated proteins based solely on network features. Overall, this study advances the application of machine learning and network theory for identifying druggable targets across a wide range of diseases. AutoTarget provides researchers with a valuable tool for expediting the discovery of novel druggable targets, potentially streamlining the drug discovery process. The AutoTarget code and database are publicly available to facilitate further research.</div></div>","PeriodicalId":52676,"journal":{"name":"Current Research in Biotechnology","volume":"8 ","pages":"Article 100260"},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142526114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chatting with artificial intelligence to combat antibiotic resistance: Opportunities and challenges","authors":"Mohammad Abavisani , Alireza Khoshrou , Sobhan Karbas Foroushan , Amirhossein Sahebkar","doi":"10.1016/j.crbiot.2024.100197","DOIUrl":"https://doi.org/10.1016/j.crbiot.2024.100197","url":null,"abstract":"<div><p>Antibiotic resistance (ABR) is a dire global health crisis, undermining the efficacy of antibiotics and ranking among the top ten public health threats according to the World Health Organization. Despite multifaceted efforts to tackle ABR, complex challenges persist across scientific, economic, behavioral, ethical, and legal dimensions. Artificial intelligence (AI), which encompasses machine capabilities for human-like tasks, offers a wide range of applications in healthcare. Chatbots, a subtype of AI, emerge as a powerful avenue for natural language interaction with users. In healthcare, chatbots have demonstrated value in symptom assessment, mental health support, medication adherence, and patient engagement. In this context, our article will comprehensively examine the opportunities and challenges presented by chatbots in bacterial disease management and ABR mitigation. We will delve into not only the technical considerations but also the ethical, legal, and social complexities accompanying their integration into healthcare. The current consideration will be valuable for healthcare professionals, policymakers, and researchers as they navigate the dynamic intersection of chatbots and the pressing issue of antibiotic resistance.</p></div>","PeriodicalId":52676,"journal":{"name":"Current Research in Biotechnology","volume":"7 ","pages":"Article 100197"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590262824000236/pdfft?md5=510a3f6da3dcf5ee6fd73f2a753f14e1&pid=1-s2.0-S2590262824000236-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140133929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Micaela Giani , Carmen Pire , Rosa María Martínez-Espinosa
{"title":"Carotenoid production by Haloferax mediterranei using starch residues from the candy industry as a carbon source","authors":"Micaela Giani , Carmen Pire , Rosa María Martínez-Espinosa","doi":"10.1016/j.crbiot.2024.100265","DOIUrl":"10.1016/j.crbiot.2024.100265","url":null,"abstract":"<div><div>Carotenoids are pigments attracting the attention of several industries due to their antioxidant, biological and coloring properties. Low-cost substrates, such as agro-industrial wastes, are being investigated as a viable option to reduce microbial production costs in processes in which microorganisms such as haloarchaea are used as cell factories to produce marketed compounds like carotenoids. They can grow on various agro-industrial wastes and produce the C<sub>50</sub> carotenoid bacterioruberin (BR), which is an extraordinary antioxidant compound with anticancer properties. In this study, the haloarchaeon <em>Haloferax mediterranei</em> is grown in the presence of starch residues from the<!--> <!-->candy industry to induce the production of carotenoids. Cells grew successfully with this industrial waste (max. O.D. 600 nm = 27.75 ± 0.09). Biomass production increased in the presence of higher quantities of starch up to 17.3 ± 0.2 mg/ml of cell culture. The maximum BR concentration was 97.39 ± 1.86 µg/ml. The total amount of BRs synthesized increased when cells grew with increasing concentrations of the industrial starch. The relative percentages of all-<em>trans</em>-BR, 5<em>-cis</em>-BR and a double isomeric BR rose, whereas 9-<em>cis</em>-BR and 13-<em>cis</em>-BR levels decreased.</div><div>Herein, haloarchaeal growth and carotenoid production can be enhanced using industrial waste products as the starch residues selected for this experiment which were provided by a candy company.</div></div>","PeriodicalId":52676,"journal":{"name":"Current Research in Biotechnology","volume":"8 ","pages":"Article 100265"},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soyeon Jeong , Seongjae Park , Jeongmi Kim , Yeonju Kim , Hojun Kim , Seongwon Yoon , Jaecheul Yu , Taeho Lee
{"title":"Balancing long-term enriched partial denitrifying bacteria and anammox bacteria for carbon-neutral mainstream nitrogen removal","authors":"Soyeon Jeong , Seongjae Park , Jeongmi Kim , Yeonju Kim , Hojun Kim , Seongwon Yoon , Jaecheul Yu , Taeho Lee","doi":"10.1016/j.crbiot.2024.100224","DOIUrl":"https://doi.org/10.1016/j.crbiot.2024.100224","url":null,"abstract":"<div><p>Anaerobic ammonium oxidation (anammox)-based process has become a method for achieving carbon-neutral wastewater treatment. However, in mainstream wastewater with a low-strength ammonium, obtaining partial nitritation (PN) for the anammox process can be challenging and often result in NO<sub>3</sub><sup>–</sup> accumulation. The recently proposed partial denitrification (PD), which reduces NO<sub>3</sub><sup>–</sup> back to NO<sub>2</sub><sup>–</sup>, can provide NO<sub>2</sub><sup>–</sup> for anammox. For a successful PD-anammox (PD/A), it is crucial to efficiently cultivate PD bacteria (PDNB) and maintain a balance between the activities of PDNB and anammox bacteria (AnAOB). In this study, an efficient PDNB enrichment was cultivated for a long period of 400 days in a sequential batch reactor (SBR) by feeding it with acetate (300 mg COD/L) and nitrate (100 mg NO<sub>3</sub><sup>–</sup>-N/L) at an exchange ratio of 50 %. The nitrite accumulation efficiency (NAE) gradually increased to >90 %, with <em>Thauera phenylacetica</em> identified as the key species for achieving high NAE. When PDNB was applied with AnAOB to remove 50 mg NH<sub>4</sub><sup>+</sup>-N/L and 50 mg NO<sub>3</sub><sup>–</sup>-N/L, different total nitrogen (TN) removal efficiencies were observed depending on the mixing ratio of PDNB and AnAOB (1:5–1:20). The most rapid and complete TN removal was achieved at the mixing ratio of 1:15. At lower mixing ratios of 1:5 and 1:10, PDNB activity exceeded that of AnAOB, resulting in incomplete TN removal. Conversely, at a higher inoculation ratio of 1:20, AnAOB activity surpassed of PDNB, leading to delayed T-N removal. These results indicate that maintaining a balance between NO<sub>2</sub><sup>–</sup> accumulation by PDNB and NO<sub>2</sub><sup>–</sup> consumption by AnAOB is essential for successful PD/A process operation. The findings of this study can be utilized as fundamental data for the operational strategy of an anammox-based process to achieve a carbon-neutral wastewater treatment.</p></div>","PeriodicalId":52676,"journal":{"name":"Current Research in Biotechnology","volume":"7 ","pages":"Article 100224"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590262824000509/pdfft?md5=3a0fd187003802bf20a8da47b4a20fe3&pid=1-s2.0-S2590262824000509-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140824126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haojie Yang , Weixiong Chen , Zicong Tan , Junjie Lin , Zhongqi Liu , Fengtao Ji , Xiaoyan Huang , Phei Er Saw , Minghui Cao
{"title":"Let-7b miRNA-loaded nanostructures inhibited human tongue squamous cell carcinoma metastasis by the MOR-SRC-EGFR axis","authors":"Haojie Yang , Weixiong Chen , Zicong Tan , Junjie Lin , Zhongqi Liu , Fengtao Ji , Xiaoyan Huang , Phei Er Saw , Minghui Cao","doi":"10.1016/j.crbiot.2024.100213","DOIUrl":"https://doi.org/10.1016/j.crbiot.2024.100213","url":null,"abstract":"<div><p>miRNA is a type of classic non-coding RNA which is enriched in cancer. Various studies reported that miRNA be involved in the progression and metastasis of TSCC. Exploring pivotal miRNAs and elaborating the mechanisms inducing metastasis are important for improving the prognosis of TSCC patients. Here, Let-7b miRNA was identified as a significant factor contributing to metastasis of TSCC via directly targeting the 3′UTR of MOR mRNA, which leads to abnormally high expression of MOR protein. MOR<!--> <!-->might<!--> <!-->bind<!--> <!-->with<!--> <!-->SRC<!--> <!-->and<!--> <!-->potentially<!--> <!-->activate<!--> <!-->p-EGFR<!--> <!-->through<!--> <!-->SRC. As a treatment modality, Let-7b miRNA mimics were encapsulated into the endosomal pH-responsive nanoparticles. NPs (Let-7b miRNA mimics) significantly inhibited Cal27 cells <em>in vitro</em> and <em>in vivo</em> metastatic model. Altogether, our data revealed that Let-7b miRNA-MOR-SRC-EGFR axis might be an effective therapeutic target in TSCC metastasis.</p></div>","PeriodicalId":52676,"journal":{"name":"Current Research in Biotechnology","volume":"7 ","pages":"Article 100213"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259026282400039X/pdfft?md5=4fd4ff817763aceae5fcdd08e2993d62&pid=1-s2.0-S259026282400039X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140633433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peiyu Feng , Hailin Tian , Dongdong Zhang , Dandan Gao , Wenxia Tan , Qian Tan
{"title":"Comparison study on ammonia recovery from anaerobic digestion slurry by different biochar: Focusing on the effect of feedstock, pyrolysis temperature, and particle size","authors":"Peiyu Feng , Hailin Tian , Dongdong Zhang , Dandan Gao , Wenxia Tan , Qian Tan","doi":"10.1016/j.crbiot.2024.100218","DOIUrl":"10.1016/j.crbiot.2024.100218","url":null,"abstract":"<div><p>Treating anaerobic digestion (AD) slurry as industrial wastewater not only consumes a significant amount of energy but also wastes its inherent abundant nutrients, particularly the high ammonium content. Ammonia recovery from AD slurry has attracted attention in recent years and biochar has tentatively been used to adsorb ammonia nitrogen. However, most of the previous studies used pure ammonium chloride solution to simulate ammonia-rich wastewater and ignored the influence of other components. Furthermore, how the physico-chemical properties of biochar influence the adsorption performance of ammonia in AD slurry remains unknown. Therefore, this study focused on the investigation of the adsorption behavior of different types of biochar to ammonia nitrogen in AD slurry. Biochar generated from rice straw, coconut shell, and wood shaving under pyrolysis temperatures of 300 °C, 500 °C, and 700 °C were used to adsorb ammonia from food waste (FW) AD slurry, and five different particle sizes of biochar were also tested. The results showed that biochar derived from rice straw (up to 9.44 mg/g) and coconut shell (up to 8.86 mg/g) had higher ammonium adsorption capacity than biochar derived from wood shaving (up to 5.13 mg/g). Moreover, low pyrolysis temperature resulted in high adsorption capacity, while particle size and surface area of the biochar were not the critical factors determining the adsorption capacity. The correlation results demonstrated that the H/C (aromaticity), O/C (hydrophilicity), pH, electrical conductivity (EC), and ash content influenced the adsorption significantly. Based on the kinetics model results, it seems that physical adsorption was the main adsorption mechanism, while ion exchange and reaction with function groups also contributed to the adsorption. Moreover, the lower adsorption capacity was observed in this study where the real FW AD slurry was used as compared to other studies where pure ammonium chloride solution was used, which implied that microorganisms in FW AD slurry may colonize on the surface or pores of biochar, resulting in a negative effect on the adsorption capacity of biochar. The results derived from this study provided technical support for ammonia recovery of AD slurry.</p></div>","PeriodicalId":52676,"journal":{"name":"Current Research in Biotechnology","volume":"7 ","pages":"Article 100218"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590262824000443/pdfft?md5=c6d6600378cc41d351bfe5dc3e3d83fe&pid=1-s2.0-S2590262824000443-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140785312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Therapeutic potential of lipopeptide biosurfactant-fabricated copper oxide nanoparticles: Mechanistic insight into their biocompatibility using zebra fish","authors":"Tamanna Bhuyan , Yugal Kishore Mohanta , Kaustuvmani Patowary , Surjendu Maity , Debasis Nayak , Kangkan Deka , K. Meenakshi Sundaram , Saravanan Muthupandian , Hemen Sarma","doi":"10.1016/j.crbiot.2024.100227","DOIUrl":"10.1016/j.crbiot.2024.100227","url":null,"abstract":"<div><p>Nanoscale copper oxide (CuO NPs) with diameters in the 80–150 nm range has been biosynthesized using lipopeptide biosurfactant derived from <em>Bacillus vallismortis</em> and characterized by XRD and FE-SEM. The CuO NPs could be introduced as nanocarrier systems for combination therapy and a potential candidate for antibacterial, antioxidant, anticancer, and anti-diabetic activity. The antibacterial activity of CuO NPs was studied by incorporating the nanoparticles with fluorescent antibiotic Ciprofloxacin HCL (CIP) to form CIP@CuO NPs and tracked inside HEK-293 cell lines. The MIC values of CIP@CuO NPs against 1 × 10<sup>6</sup> CFU ml<sup>−1</sup> <em>Pseudomonas aeruginosa</em> was determined to be 76 µg ml<sup>−1</sup>and 69 µg ml<sup>−1</sup> against 1 × 10<sup>6</sup> CFU ml<sup>−1</sup> <em>Staphylococcus aureus</em>. The CuO NPs were conjugated with the anticancer drug Doxorubicin (DOX) to form DOX@CuONPs, improving delivery toward cancer (HeLa) cells. The intracellular uptake of the drug-loaded CuO NPs was confirmed from confocal micrographs. Finally, the <em>in vitro</em> anti-diabetic activity of lipopeptide-coated CuO NPs was confirmed by the inhibitory activity of α-amylase. In contrast, the <em>in vivo</em> anti-diabetic efficacy of CuO NPs was validated by a significant reduction in blood glucose and glutathione levels. The CuO NPs positively affected the histopathological changes of the pancreas in induced diabetic mice. Cytotoxicity testing with Zebrafish demonstrated abnormal organ development with varying viability and hatching rates at 72 and 96 hpf, with an LC<sub>50</sub> of 45 µg/l. Aside from the various potential medicinal characteristics, the study provided valuable information on cytotoxic impact, which can be used in future investigations of their eco-toxicological impacts.</p></div>","PeriodicalId":52676,"journal":{"name":"Current Research in Biotechnology","volume":"7 ","pages":"Article 100227"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590262824000534/pdfft?md5=8d3f4605547dc3b7059e4f7c85912037&pid=1-s2.0-S2590262824000534-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141052066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}