Agrobacterium tumefaciens-mediated transformation for the genetic modification of the biotechnologically relevant fungus Aspergillus vadensis through synthetic biology

IF 3.6 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Carolina Ropero-Pérez, Paloma Manzanares, Jose F. Marcos, Sandra Garrigues
{"title":"Agrobacterium tumefaciens-mediated transformation for the genetic modification of the biotechnologically relevant fungus Aspergillus vadensis through synthetic biology","authors":"Carolina Ropero-Pérez,&nbsp;Paloma Manzanares,&nbsp;Jose F. Marcos,&nbsp;Sandra Garrigues","doi":"10.1016/j.crbiot.2024.100178","DOIUrl":null,"url":null,"abstract":"<div><p>In the last years, many research efforts have been applied for the development of filamentous fungi as hosts for heterologous protein production. <em>Aspergillus vadensis</em> CBS 113365, a close relative of the industrial workhorse <em>Aspergillus niger</em>, has been suggested as a more suitable cell factory as it does not acidify the culture medium and produces very low levels of secreted proteases. Therefore, efficient methods and tools that allow the genetic manipulation and exploitation of this biotechnologically relevant fungus are needed. To date, only protoplast-mediated transformation and classical cloning strategies have been implemented for <em>A. vadensis</em> genetic modification, which decreases the exploitation capacity of this fungus at the industrial level. In this study, we have adapted and implemented an <em>Agrobacterium tumefaciens-</em>mediated transformation protocol for <em>A. vadensis</em> for the first time, and applied the FungalBraid system to genetically modify this species by means of synthetic biology. As proof of concept, we have successfully complemented and fluorescently labelled a uridine auxotrophic <em>A. vadensis pyrA<sup>-</sup></em> strain and generated <em>A. vadensis</em> mutants carrying the <em>Penicillium expansum</em>-based expression cassette for the heterologous production of the antifungal protein PeAfpA from <em>P. expansum</em>. Even though we have yet to find the conditions that trigger PeAfpA production in this species, the implementation of the ATMT method reported here, along with the application of the FungalBraid system, will greatly aid in this task and will facilitate the exploitation of <em>A. vadensis</em> as a fungal workhorse for protein production for multiple biotechnological applications.</p></div>","PeriodicalId":52676,"journal":{"name":"Current Research in Biotechnology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590262824000042/pdfft?md5=0a49fe4461640e9825957bfc2ee33df5&pid=1-s2.0-S2590262824000042-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590262824000042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In the last years, many research efforts have been applied for the development of filamentous fungi as hosts for heterologous protein production. Aspergillus vadensis CBS 113365, a close relative of the industrial workhorse Aspergillus niger, has been suggested as a more suitable cell factory as it does not acidify the culture medium and produces very low levels of secreted proteases. Therefore, efficient methods and tools that allow the genetic manipulation and exploitation of this biotechnologically relevant fungus are needed. To date, only protoplast-mediated transformation and classical cloning strategies have been implemented for A. vadensis genetic modification, which decreases the exploitation capacity of this fungus at the industrial level. In this study, we have adapted and implemented an Agrobacterium tumefaciens-mediated transformation protocol for A. vadensis for the first time, and applied the FungalBraid system to genetically modify this species by means of synthetic biology. As proof of concept, we have successfully complemented and fluorescently labelled a uridine auxotrophic A. vadensis pyrA- strain and generated A. vadensis mutants carrying the Penicillium expansum-based expression cassette for the heterologous production of the antifungal protein PeAfpA from P. expansum. Even though we have yet to find the conditions that trigger PeAfpA production in this species, the implementation of the ATMT method reported here, along with the application of the FungalBraid system, will greatly aid in this task and will facilitate the exploitation of A. vadensis as a fungal workhorse for protein production for multiple biotechnological applications.

Abstract Image

利用农杆菌介导的转化,通过合成生物学对具有生物技术价值的真菌瓦氏曲霉进行基因改造
在过去几年中,许多研究人员致力于开发丝状真菌作为异源蛋白生产的宿主。瓦登黑曲霉(Aspergillus vadensis CBS 113365)是工业主力黑曲霉(Aspergillus niger)的近亲,被认为是更合适的细胞工厂,因为它不会酸化培养基,而且产生的分泌蛋白酶水平很低。因此,需要有效的方法和工具来对这种与生物技术相关的真菌进行遗传操作和利用。迄今为止,只有原生质体介导的转化和经典的克隆策略被用于 A. vadensis 的基因改造,这降低了这种真菌在工业层面的利用能力。在这项研究中,我们首次对农杆菌介导的转化协议进行了调整和实施,并应用 FungalBraid 系统通过合成生物学方法对该物种进行基因改造。作为概念验证,我们成功地对尿苷辅助型 A. vadensis pyrA- 菌株进行了互补和荧光标记,并生成了携带扩张青霉表达盒的 A. vadensis 突变体,用于异源生产扩张青霉的抗真菌蛋白 PeAfpA。尽管我们还没有找到在该物种中引发 PeAfpA 生产的条件,但本文所报道的 ATMT 方法的实施以及 FungalBraid 系统的应用将大大有助于这一任务的完成,并将促进将 A. vadensis 作为真菌生产蛋白质的主力军,用于多种生物技术应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Research in Biotechnology
Current Research in Biotechnology Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.70
自引率
3.60%
发文量
50
审稿时长
38 days
期刊介绍: Current Research in Biotechnology (CRBIOT) is a new primary research, gold open access journal from Elsevier. CRBIOT publishes original papers, reviews, and short communications (including viewpoints and perspectives) resulting from research in biotechnology and biotech-associated disciplines. Current Research in Biotechnology is a peer-reviewed gold open access (OA) journal and upon acceptance all articles are permanently and freely available. It is a companion to the highly regarded review journal Current Opinion in Biotechnology (2018 CiteScore 8.450) and is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy-of editorial excellence, high-impact, and global reach-to ensure they are a widely read resource that is integral to scientists' workflow.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信