{"title":"Cultivation of the Oligo-Mouse-Microbiota OMM12 in the peristaltic mixed tubular bioreactor PETR","authors":"David Vorländer, Kristin Hoffmann, Katrin Dohnt","doi":"10.1016/j.crbiot.2025.100294","DOIUrl":"10.1016/j.crbiot.2025.100294","url":null,"abstract":"<div><div>The intestinal microbiota plays a crucial role in human health and disease, and is therefore of great interest in various research areas. However, studies with humans are limited and difficult to control, leading to a growing demand for sophisticated bioreactor systems that can mimic human intestinal conditions <em>in vitro</em>. The main objective of this study is to compare the <em>in vitro</em> growth of a defined microbiota in the recently published PEristaltic mixed Tubular bioReactor (PETR) with previously published <em>in vivo</em> data for the same microbiota. PETR simulates various colonic conditions, including peristaltic mixing, dialytic water and metabolite removal, and a temporally constant and longitudinally progressive pH gradient in a continuously operated tubular bioreactor. The Oligo-Mouse-Microbiota OMM<sup>12</sup> was chosen as model microbiota and consists of 12 bacteria representing the major phyla of the mouse intestine. During 10<!--> <!-->d continuous cultivation in PETR, community composition was regularly analyzed using strain-specific qPCR. The results were consistent with the formation of organic acids measured by HPLC. After approximately 6<!--> <!-->d, the optical density, concentrations of organic acids, and the microbiota composition remained relatively stable. Despite the different intestinal conditions of humans and mice, several similarities between reactor cultivation and gnotobiotic mouse model confirm PETR as a suitable system for microbiota research.</div></div>","PeriodicalId":52676,"journal":{"name":"Current Research in Biotechnology","volume":"9 ","pages":"Article 100294"},"PeriodicalIF":3.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143907644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rajeev K. Singla , Himel Mondal , Shailja Singla , Ronita De , Sahar Behzad , Mihnea-Alexandru Găman , Siva Sai Chandragiri , Merisa Cenanovic , Jayanta Kumar Patra , Jennifer R. Depew , Hemanth Kumar Boyina , Abdulkadir Yusif Maigoro , Soojin Lee , Omar M. Atrooz , Gitishree Das , Fabien Schultz , Emad Mohamed Abdallah , Hitesh Chopra , Jamil Ahmad , Rupesh K. Gautam , Bairong Shen
{"title":"Exploring nutritional supplement use for countering respiratory tract infections through an X (formerly Twitter)-based survey","authors":"Rajeev K. Singla , Himel Mondal , Shailja Singla , Ronita De , Sahar Behzad , Mihnea-Alexandru Găman , Siva Sai Chandragiri , Merisa Cenanovic , Jayanta Kumar Patra , Jennifer R. Depew , Hemanth Kumar Boyina , Abdulkadir Yusif Maigoro , Soojin Lee , Omar M. Atrooz , Gitishree Das , Fabien Schultz , Emad Mohamed Abdallah , Hitesh Chopra , Jamil Ahmad , Rupesh K. Gautam , Bairong Shen","doi":"10.1016/j.crbiot.2025.100282","DOIUrl":"10.1016/j.crbiot.2025.100282","url":null,"abstract":"<div><h3>Background</h3><div>Respiratory tract infections are a common health issue, driving interest in preventive strategies like nutritional supplements, while evidence on their usage and effectiveness remains limited. In this context, social media platforms, particularly X (formerly Twitter), provide a unique opportunity to gather large-scale public health-related data.</div></div><div><h3>Objectives</h3><div>In this study, we aimed to survey participants’ uses and opinions on nutritional supplements in prevention or treatment of respiratory tract infections, by using X.</div></div><div><h3>Methods</h3><div>A survey was conducted between 1st and 15th December 2022. A single open-ended question “Which are the best dietary supplements to counteract respiratory infections?“ was asked. One week after the start of the survey, a poll was posted to get more relevant information and boost the survey’s reach. Total endorsements were calculated for each tweet posted as the total sum of replies, retweets, and likes.</div></div><div><h3>Results</h3><div>The open-ended question received a total of 118 retweets, 39 quotes, and 371 likes, while the poll received 56 retweets, 13 quotes, and 67 likes. A total of 495 replies, 2,251 retweets, 5,118 likes, and 148 quotes were received for the question and its related tweets. Vitamin D (1,607 endorsements), zinc (1,347 endorsements), vitamin C (803 endorsements), magnesium (694 endorsements), and honey (661 endorsements) were the nutritional supplements that received most endorsements.</div></div><div><h3>Conclusion</h3><div>Various foods, drinks, and natural ingredients have been suggested as potentially helpful for counteracting respiratory infections. Approximately half of respondents indicated using such supplements for themselves. The result of this study supports the idea that the X platform can be used as an effective survey tool to study global health-related behaviours and trends.</div></div>","PeriodicalId":52676,"journal":{"name":"Current Research in Biotechnology","volume":"9 ","pages":"Article 100282"},"PeriodicalIF":3.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143935131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marcus V.M.V. Amaral , Cláudia B. Carraro , Amanda C.C. Antoniêto , Mariana N. Costa , Thais F.C. Fraga-Silva , Ualter G. Cipriano , Rodrigo P.F. Abuná , Tamara S. Rodrigues , Ronaldo B. Martins , Andreia M. Luzenti , Glaucia R. Caruso , Priscyla D. Marcato , Vania L.D. Bonato , Dario S. Zamboni , Bergman M. Ribeiro , Sônia N. Báo , Joao S. da Silva , Flávio P. Veras , Roberto N. Silva
{"title":"Biogenic silver nanoparticles produced by Trichoderma reesei inhibit SARS-CoV-2 infection, reduce lung viral load and ameliorate acute pulmonary inflammation","authors":"Marcus V.M.V. Amaral , Cláudia B. Carraro , Amanda C.C. Antoniêto , Mariana N. Costa , Thais F.C. Fraga-Silva , Ualter G. Cipriano , Rodrigo P.F. Abuná , Tamara S. Rodrigues , Ronaldo B. Martins , Andreia M. Luzenti , Glaucia R. Caruso , Priscyla D. Marcato , Vania L.D. Bonato , Dario S. Zamboni , Bergman M. Ribeiro , Sônia N. Báo , Joao S. da Silva , Flávio P. Veras , Roberto N. Silva","doi":"10.1016/j.crbiot.2025.100277","DOIUrl":"10.1016/j.crbiot.2025.100277","url":null,"abstract":"<div><div>The COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), posed a significant global health challenge and still demands efforts to develop new therapies. In this study, we investigated the potential of biogenic silver nanoparticles (AgNPs) synthesized by the fungus <em>Trichoderma reesei</em> to combat SARS-CoV-2 infection. In silico studies showed that AgNPs, ranging from 7 nm to 50 nm, have high affinity for spike protein from different variant of SARS-CoV-2. Our findings show that AgNPs effectively do not affect cell viability in Calu-3 cells, inhibit viral infection in Vero-E6 cells and progression of infection <em>in vitro</em>. Additionally, AgNPs impair caspase-1 activation, lactate dehydrogenase release and IL-1β production by human monocytes. Moreover, our study reveals that AgNPs treatment significantly alleviated acute lung injury induced by SARS-CoV-2 infection in Syrian hamsters. This suggests that AgNPs treatment effectively impairs viral replication or propagation within lung tissue, highlighting its potential as an antiviral agent against SARS-CoV-2. Further investigations are warranted to elucidate the underlying mechanisms of action of AgNPs and to assess their safety and efficacy in clinical settings. Nonetheless, our findings offer promising insights into the development of novel therapeutic strategies for combating COVID-19 and reducing its associated morbidity and mortality.</div></div>","PeriodicalId":52676,"journal":{"name":"Current Research in Biotechnology","volume":"9 ","pages":"Article 100277"},"PeriodicalIF":3.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143372916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Somil Thakur, Rajnish Kaur Calay, Mohamad Y. Mustafa, Fasil E. Eregno, Ravindra R. Patil
{"title":"Importance of substrate type and its constituents on overall performance of microbial fuel cells","authors":"Somil Thakur, Rajnish Kaur Calay, Mohamad Y. Mustafa, Fasil E. Eregno, Ravindra R. Patil","doi":"10.1016/j.crbiot.2025.100272","DOIUrl":"10.1016/j.crbiot.2025.100272","url":null,"abstract":"<div><div>Microbial Fuel Cells (MFC) have emerged as a potential wastewater treatment technology that utilizes metabolic processes of microorganisms present in the wastewater to disintegrate organic substrates and harness direct electricity. This paper reviews the potential of different wastewater types as a suitable substrate for microbial activities in MFCs. Substrate composition (carbon source, nutrient content and inhibitory compounds) directly affects the microbial growth, wastewater treatment potential, electron transfer rate and power harvested. Readily biodegradable substrates such as acetate and glucose promote microbial metabolism and electron transport, thus resulting in enhanced power generation. Substrates such as municipal or agricultural wastewater that constitute both simple and complex organic matter require longer breakdown durations but can provide MFCs with long term operational stability. On the other hand, substrates such as leachate from landfills, mining wastewater etc. are generally unsuitable for regular operations. The paper discusses the challenges such as suitability of various wastewaters, unpredictability of composition, presence of inhibitory chemicals like heavy metals or toxic organics that can subdue the microbial activity and reduce efficiency of a MFC reactor. It aims to identify the relationship between the substrate characteristics and MFC performance in order to select the substrate for achieving optimal output from MFC technology. The suitable substrates that exhibit optimal performance in terms of current and power output, coulombic efficiency, and reduction in chemical oxygen demand are identified.</div></div>","PeriodicalId":52676,"journal":{"name":"Current Research in Biotechnology","volume":"9 ","pages":"Article 100272"},"PeriodicalIF":3.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143136613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arun Karnwal , Gaurav Kumar , Alaa El Din Mahmoud , Joydeep Dutta , Rattandeep Singh , Abdel Rahman Mohammad Said Al-Tawaha , Tabarak Malik
{"title":"Eco-engineered remediation: Microbial and rhizosphere-based strategies for heavy metal detoxification","authors":"Arun Karnwal , Gaurav Kumar , Alaa El Din Mahmoud , Joydeep Dutta , Rattandeep Singh , Abdel Rahman Mohammad Said Al-Tawaha , Tabarak Malik","doi":"10.1016/j.crbiot.2025.100297","DOIUrl":"10.1016/j.crbiot.2025.100297","url":null,"abstract":"<div><div>Heavy metal (HM) contamination significantly threatens ecosystems and human health. This review explores eco-engineered bioremediation strategies, focusing on the pivotal role of rhizosphere-associated microorganisms in detoxifying heavy metals. Rhizobacteria deploy diverse mechanisms—including biosorption, bioaccumulation, biotransformation, and biomineralization—to immobilize or convert toxic metals, with their efficiency strongly influenced by environmental factors such as pH and metal speciation. Plant Growth-Promoting Rhizobacteria (PGPR) further enhance phytoremediation by mitigating metal-induced phytotoxicity and promoting plant resilience under stress. Various scalable approaches, including in-situ and ex-situ remediation techniques, biosorbents, microbial consortia, and genetically engineered microbes (GEMs), show promising potential but raise essential ecological and regulatory concerns. Key challenges such as scalability, environmental variability, and the possible formation of toxic intermediates must be carefully addressed. Advances in omics technologies and a deeper exploration of native microbial communities offer promising avenues to optimize bioremediation outcomes. Moreover, a detailed understanding of plant–microbe interactions and the role of secondary metabolite signalling in the rhizosphere is essential to improve remediation efficiency. Future strategies should prioritize the application of functional genomics, developing bioinoculants tailored to specific environmental conditions, and implementing robust ecological risk assessments for GEMs. This review underscores the need for a multidisciplinary approach- integrating microbial ecology, plant sciences, and environmental engineering- to drive the development of sustainable, effective HM remediation technologies worldwide.</div></div>","PeriodicalId":52676,"journal":{"name":"Current Research in Biotechnology","volume":"9 ","pages":"Article 100297"},"PeriodicalIF":3.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144068769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Peptides and peptidomimetics in the development of hydrogels towards the treatment of diabetic wounds","authors":"Ana Gomes, Paula Gomes","doi":"10.1016/j.crbiot.2025.100292","DOIUrl":"10.1016/j.crbiot.2025.100292","url":null,"abstract":"<div><div>Diabetic foot ulcers are a major complication of diabetes and a particularly complex type of chronic wounds, as most diabetes-related physiological dysregulations impair healing and increase the risk of infection. Despite many health literacy initiatives have been deployed to promote both the prevention and the proper management of diabetic foot ulcers, these remain a serious healthcare problem whose incidence is rising. This demands not only for a continuous updating of guidelines for adequate interventions in healthcare facilities, but also for new topical treatments able to improve the health and well-being of the patients. In this later case, current options include topical oxygen therapy, negative pressure wound therapy, wound dressings of different types, and topical gels. Due to the tremendous potential of hydrogel-based dressings for diabetic wound treatment, several hydrogels from either natural or synthetic origin have been explored. The hydrogel polymeric matrices can be loaded with many diverse molecules (cargoes) eventually combining distinct therapeutic actions. In this context, peptides are gaining relevance, which is not limited to those used as bioactive cargoes, since self-assembling peptides able to form hydrogels are also under the spotlight. This review focuses on the studies reported over the last decade where peptide-loaded or peptide-derived hydrogels have been tested <em>in vivo</em> for topical treatment of diabetic wounds and further explores the potential of peptidomimetics to expand the portfolio of hydrogel-based treatments for diabetic foot ulcers.</div></div>","PeriodicalId":52676,"journal":{"name":"Current Research in Biotechnology","volume":"9 ","pages":"Article 100292"},"PeriodicalIF":3.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143879009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Junyue Fang , Qiongchao Jiang , Xinyu Yang , Weifan Li , Li Lin , Meng Zhang , Phei Er Saw , Xiaoyun Xiao
{"title":"Construction of targeting GPR77+CD10+ lipid nanoparticles and validation of targeting capability in vitro and in vivo","authors":"Junyue Fang , Qiongchao Jiang , Xinyu Yang , Weifan Li , Li Lin , Meng Zhang , Phei Er Saw , Xiaoyun Xiao","doi":"10.1016/j.crbiot.2025.100291","DOIUrl":"10.1016/j.crbiot.2025.100291","url":null,"abstract":"<div><div>Dual-receptor targeting strategies hold promise for improving nanocarrier specificity in complex tumor microenvironments. Herein, we engineered lipid nanoparticles (LNPs) functionalized with GPR77 and CD10 antibodies to exploit receptor co-expression as a mechanism for enhanced targeting. To rigorously validate this approach, we developed a GPR77<sup>+</sup>CD10<sup>+</sup> overexpressing CHO cell model, which served as a controlled system to dissect ligand-receptor interactions. The dual-targeting LNPs (DOPE(GPR77/CD10)) exhibited significantly higher cellular uptake in receptor-positive CHO cells compared to single-targeted or non-targeted formulations, demonstrating synergistic binding efficacy. These LNPs also showed excellent drug encapsulation and prolonged circulation. In a CHO xenograft model, dual-targeting LNPs achieved higher tumor accumulation than non-targeted controls, with minimal off-target organ retention. Biosafety assessments confirmed negligible hemolysis and no hepatorenal toxicity. While this study focused on mechanistic validation in a simplified model, our findings establish a generalizable platform for dual-receptor targeting, with potential applications in stromal or tumor cell-specific drug delivery.</div></div>","PeriodicalId":52676,"journal":{"name":"Current Research in Biotechnology","volume":"9 ","pages":"Article 100291"},"PeriodicalIF":3.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143859723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Martina Catalano , Lorenzo Landini , Filippo Nozzoli , Romina Nassini , Giandomenico Roviello , Francesco De Logu
{"title":"Unraveling the role of perineural invasion in cancer-associated pain: Insights and treatment strategies","authors":"Martina Catalano , Lorenzo Landini , Filippo Nozzoli , Romina Nassini , Giandomenico Roviello , Francesco De Logu","doi":"10.1016/j.crbiot.2025.100305","DOIUrl":"10.1016/j.crbiot.2025.100305","url":null,"abstract":"<div><div>Perineural invasion (PNI) occurs when cancer cells infiltrate the space around nerves, commonly seen in head and neck, pancreatic, prostate, and colorectal cancers. PNI is clinically significant as it promotes metastasis, recurrence, and reduced survival. Mechanistically, it involves tumor-neural microenvironment interactions mediated by neurotrophic factors, inflammatory signals, and immune responses. PNI also causes severe neuropathic pain due to nerve compression, plasticity, and inflammation, resulting in sensory abnormalities from neuronal hyperexcitability, demyelination, and upregulated ion channels. This pain significantly impacts quality of life and complicates cancer management. Cells like macrophages and Schwann cells amplify pain via paracrine signaling and pro-inflammatory mediators. Standard pain management, including NSAIDs and opioids, often fails due to toxicity. Emerging therapies target PNI-specific mechanisms to limit tumor-nerve interactions and relieve pain. Research focuses on improving PNI models, dissecting tumor neuroimmune networks, and translating targeted therapies for effective pain relief.</div></div>","PeriodicalId":52676,"journal":{"name":"Current Research in Biotechnology","volume":"10 ","pages":"Article 100305"},"PeriodicalIF":3.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144312492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Insights into the world of edible vaccines: From lab to reality","authors":"Baveesh Pudhuvai , Bhupendra Koul , Awdhesh Kumar Mishra","doi":"10.1016/j.crbiot.2025.100290","DOIUrl":"10.1016/j.crbiot.2025.100290","url":null,"abstract":"<div><div>Edible vaccines have emerged as a groundbreaking advancement in the field of immunization, offering a unique and promising approach to combat infectious diseases. These are subunit vaccines wherein plants are genetically engineered to synthesise specific proteins to induce disease resistance. This idea of plant-based edible vaccines (PBVs) shall prove to be a boon for society, in the health sector as they are affordable, simple to administer and store. The use of edible vaccines has demonstrated a boost in mucosal and systemic immunity. Plants like potato, banana, lettuce, corn, soybean, rice, and legumes have been utilized for this application and have resulted in reduced diseases such as cholera, hepatitis, measles, diarrhoea. This review provides an overview of edible vaccines, exploring their development, advantages, challenges, and future potential. This further explores the processes involved in transforming plants using both direct and indirect gene delivery methods and provides an in-depth analysis of the background and clinical evidence for each plant candidate. Additionally, it also highlights the scientific advancements, ethical considerations, regulatory aspects, and potential impact of edible vaccines on global health and shall benefit researchers globally, in the field of developmental therapeutics, alternative medicine, and green chemistry.</div></div>","PeriodicalId":52676,"journal":{"name":"Current Research in Biotechnology","volume":"9 ","pages":"Article 100290"},"PeriodicalIF":3.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143859722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fatihu Kabir Sadiq , Abdulalim Ahovi Sadiq , Tiroyaone Albertinah Matsika , Barikisu Ahuoyiza Momoh
{"title":"Sustainable remediation of persistent organic Pollutants: A review on Recent innovative technologies","authors":"Fatihu Kabir Sadiq , Abdulalim Ahovi Sadiq , Tiroyaone Albertinah Matsika , Barikisu Ahuoyiza Momoh","doi":"10.1016/j.crbiot.2025.100293","DOIUrl":"10.1016/j.crbiot.2025.100293","url":null,"abstract":"<div><div>Persistent organic pollutants (POPs) are harmful chemicals that remain in the environment for a long time due to their resistance to degradation. They represent a significant challenge to sustainable development due to their enduring presence and potential for bioaccumulation in the environment. This review examines emerging technologies for POP remediation, assessing conventional methods while emphasizing the potential of innovative approaches. Advanced technologies, including nanotechnology and advanced oxidation processes (AOPs), show potential for effective, cost-efficient and environmentally friendly POP degradation. Among AOPs, methods such as UV/H<sub>2</sub>O<sub>2</sub>, Fenton’s reaction, photo-Fenton, UV/Ozone, and photocatalysis with semiconductors like TiO<sub>2</sub> are particularly effective in breaking down POPs into less harmful substances. Nanotechnology-based methods provide high efficiency, selectivity, and reduced environmental impact, while photocatalysis offers a sustainable and eco-friendly approach to POP degradation. To enhance remediation effectiveness, integrating innovative materials, optimized processes, and artificial intelligence (AI) is crucial. Advancements in eco-friendly nanomaterials, hybrid AOPs, and AI-driven process optimization can significantly improve degradation efficiency, selectivity, and sustainability. Future research should focus on scaling up these technologies, improving cost-effectiveness, and incorporating AI-powered smart monitoring systems for long-term environmental management. A holistic and sustainable remediation strategy must also align with circular economy principles, promote eco-friendly innovations, and address the influence of climate change on POP behavior. By fostering interdisciplinary research, policy support, and international collaboration, the development of accessible and sustainable remediation solutions can be accelerated, contributing to a cleaner environment and a healthier future for all.</div></div>","PeriodicalId":52676,"journal":{"name":"Current Research in Biotechnology","volume":"9 ","pages":"Article 100293"},"PeriodicalIF":3.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143863703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}