Amala Sonny;Abhinav Kumar;Linga Reddy Cenkeramaddi
{"title":"Dynamic Targets Occupancy Status Detection Utilizing mmWave Radar Sensor and Ensemble Machine Learning","authors":"Amala Sonny;Abhinav Kumar;Linga Reddy Cenkeramaddi","doi":"10.1109/OJIES.2024.3377012","DOIUrl":"10.1109/OJIES.2024.3377012","url":null,"abstract":"Rapid advancements in communication technologies in the Internet of Things (IoT) domain have had an impact on the application of positioning technology across multiple domains. Although there have been numerous fully fledged approaches for detection and localization in outdoor scenarios, due to high path loss and shadowing, these are insufficiently accurate in indoor scenarios. The primary enabler of various healthcare and safety applications is the precise sensing and localization of targets. A cost-effective approach with little maintenance is crucial for the development of such reliable systems. To address such sensing and localization challenges in indoor scenarios, we propose a novel dynamic target detection technique based on an ensembled convolutional neural network (CNN) classifier. An AWR1843 Radar sensor is used to collect data corresponding to dynamic targets in indoor scenarios. The range of each moving target in the room is estimated using point cloud data extracted from the received signal. An ensemble-based 1-D CNN classifier is used to analyze the data. To model the ensemble classifier, we used three CNN classifiers. The performances of the state-of-the-art classifiers considered in the comparison varied between 44\u0000<inline-formula><tex-math>$%$</tex-math></inline-formula>\u0000 and 95\u0000<inline-formula><tex-math>$%$</tex-math></inline-formula>\u0000 in terms of accuracy. In contrast, the proposed system attained an accuracy of 97.65\u0000<inline-formula><tex-math>$%$</tex-math></inline-formula>\u0000 during training and 96.47\u0000<inline-formula><tex-math>$%$</tex-math></inline-formula>\u0000 during testing and outperformed the state-of-the-art approaches.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"5 ","pages":"251-263"},"PeriodicalIF":8.5,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10472124","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140129252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"EM-Act: A Modular Series Elastic Actuator for Dynamic Robots","authors":"Ramesh krishnan Muttathil Gopanunni;Lorenzo Martignetti;Francesco Iotti;Alok Ranjan;Franco Angelini;Manolo Garabini","doi":"10.1109/OJIES.2024.3400052","DOIUrl":"10.1109/OJIES.2024.3400052","url":null,"abstract":"The trend of current robotic research is to develop mobile robots that can perform highly dynamic tasks, which include jumping and running. To be employed profitably, this research necessitates a significant amount of work in the development of innovative planning and control algorithms that need experimental validation on actual robots. However, the majority of robots with highly dynamic performance capabilities are currently restricted to a few expensive platforms. This is a major obstacle that ultimately restricts the amount of contributors and the advancement of the research. Thus, a cost-effective actuator solution is needed that is also able to execute very dynamic movements. With this goal in mind, we present EM-Act, a modular series elastic actuator (SEA) for legged and multimodal dynamic robots. This work focuses on the development of the actuator solution by defining jump height as the prerequisite, identifying actuator parameters through simulations, and selecting and testing mechatronic elements of the design. The work also discusses a compact integration of desired compliance to address the impact forces. Furthermore, the work also details the implementation of the actuator solution on a 2-degree-of-freedom (DOF) robotic leg and experimentally validates its jumping performance.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"5 ","pages":"468-480"},"PeriodicalIF":8.5,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10529546","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140928625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Heyang Yao;Lei Shu;Wei Lin;Kai Huang;Miguel Martínez-García;Xiuguo Zou
{"title":"Pests Phototactic Rhythm Driven Solar Insecticidal Lamp Device Evolution: Mathematical Model Preliminary Result and Future Directions","authors":"Heyang Yao;Lei Shu;Wei Lin;Kai Huang;Miguel Martínez-García;Xiuguo Zou","doi":"10.1109/OJIES.2024.3372577","DOIUrl":"10.1109/OJIES.2024.3372577","url":null,"abstract":"The solar insecticidal lamp (SIL) is an electronic device designed for physical pest control, widely utilized in orchards and farmland. Currently, the characteristic of the phototactic rhythm of pest is commonly ignored in the design of SILs, hindering pest control. This phenomenon is particularly evident in the prolonged turning \u0000<sc>on/off</small>\u0000lamp, which leads to inefficient energy utilization due to the lack of adjustment for peak pest activity. To address this issue, four models based on the phototactic rhythm of pests are developed to adjust the insecticidal timing of SIL for precise pest control. These mathematical models are established considering the phototactic rhythm of four pests that exert the most significant impact on crops, namely \u0000<italic>Mythimna seperata</i>\u0000, \u0000<italic>Helicoverpa armigera</i>\u0000, \u0000<italic>Proxenus lepigone</i>\u0000, and \u0000<italic>Cnaphalocrocis medinalis</i>\u0000. The results indicate that mathematical modeling of the phototactic rhythm of the pest is valuable in capturing their nocturnal activity patterns. The proposed mathematical model can help to optimize the \u0000<sc>on/off</small>\u0000time of SIL for pest control. The integration of electronic devices, such as SIL in pest management represents a noteworthy advancement in agricultural electronics, contributing to the progress of smart and sustainable agriculture.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"5 ","pages":"236-250"},"PeriodicalIF":8.5,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10468051","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140116483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chamod Samarajeewa;Daswin De Silva;Milos Manic;Nishan Mills;Prabod Rathnayaka;Andrew Jennings
{"title":"Explainable Artificial Intelligence for Crowd Forecasting Using Global Ensemble Echo State Networks","authors":"Chamod Samarajeewa;Daswin De Silva;Milos Manic;Nishan Mills;Prabod Rathnayaka;Andrew Jennings","doi":"10.1109/OJIES.2024.3397789","DOIUrl":"10.1109/OJIES.2024.3397789","url":null,"abstract":"Crowd monitoring is a primary function in diverse industrial domains, such as smart cities, public transport, and public safety. Recent advancements in low-energy devices and rapid connectivity have enabled the generation of real-time data streams suitable for crowd-monitoring applications. Crowd forecasting is typically achieved using deep learning models that learn the evolving nature of data streams. The computational complexity, execution time, and opaqueness are inherent challenges of deep learning models that also overlook the latent relationships between multiple real-time data streams for improved accuracy. To address these challenges, we propose the global ensemble echo state network approach for explainable crowd forecasting using multiple WiFi data streams. This approach replaces the random input mapping layer with a clustering layer, allowing the network to learn input projections on cluster centroids. It incorporates an ensemble readout comprising a stack of reservoir layers that provide model explainability. It also learns multiple related time series in parallel to construct a global model that leverage latent relationships across the data streams. This approach was empirically evaluated in a multicampus, mixed-use tertiary education setting. The results of which confirm the effectiveness and interpretability of the proposed approach for industrial applications of crowd forecasting.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"5 ","pages":"415-427"},"PeriodicalIF":8.5,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10526417","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140928623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of High Step-Up Quasi-Z-Source-Based Converter With Low Input Current Ripple","authors":"Ataollah Samadian;Milad Ghavipanjeh Marangalu;Iman Talebian;Navid Hadifar;Seyed Hossein Hosseini;Mehran Sabahi;Hani Vahedi","doi":"10.1109/OJIES.2024.3398250","DOIUrl":"10.1109/OJIES.2024.3398250","url":null,"abstract":"This article presents a new high step-up quasi-\u0000<italic>Z</i>\u0000-source-based dc–dc converter with switched boost techniques and voltage multiplier cells. Compared with the conventional \u0000<italic>Z</i>\u0000-source-based converters, this converter not only can achieve high voltage gain but also has good efficiency at high output voltage and higher output power conditions. Most of the \u0000<italic>Z</i>\u0000-source-based converters suffer from high current stress across the power \u0000<sc>mosfet</small>\u0000s and the operation in lower power. However, the other important advantages include very low input current ripple, low voltage and current stress across the power switches, no duty ratio limitation, and leakage current elimination by providing the common grounded feature. So, in this topology, the null of the output is connected to the negative terminal of the input dc source directly. Therefore, the leakage current can be eliminated completely. As a result, the proposed converter is suitable for renewable energy sources (RESs)’ applications, such as photovoltaic (PV) systems. The mathematical analysis, operating principle for the proposed converter, and comparison with other converters are evaluated. Finally, in order to verify the accurate performance of the proposed converter and confirm the mentioned features of the proposed converter, a 1-kW laboratory prototype is built and tested.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"5 ","pages":"632-650"},"PeriodicalIF":5.2,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10522899","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140928621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Novel Discontinuous PWM Method With Hybrid Three-Step Commutation to Reduce Common-Mode Voltage for Direct Matrix Converter","authors":"Sahel Solemanifard;Cheng-Chin Hu;Tzung-Lin Lee;Mohammadreza Lak","doi":"10.1109/OJIES.2024.3397681","DOIUrl":"10.1109/OJIES.2024.3397681","url":null,"abstract":"The conventional discontinuous pulsewidth modulation (PWM) can provide several advantages in a direct matrix converter (DMC), such as less switching number and less execution time for modulation signals' calculation. However, it suffers from high common-mode voltage (CMV), which may cause damage to the DMC-based system. This article proposes a novel discontinuous PWM (DPWM) method to not only mitigate CMV but also further improve the conversion efficiency. In this method, the switching sequence is obtained in a new way using two medium and two small input line voltages, increasing the conversion efficiency. Besides, the proposed DPWM employs a rotating vector instead of a zero vector, which causes the CMV to reduce by 50% compared with the conventional DPWM. Notably, the proposed DPWM provides the above advantages while maintaining low total harmonic distortion (THD). Simulations and experiments have been conducted to verify the proposed DPWM method's effectiveness. The results of these tests support the claims made in the paper regarding the reduction of CMV, improved efficiency, and low THD.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"5 ","pages":"400-414"},"PeriodicalIF":8.5,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10521712","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140942275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nabil Mohammed;Harith Udawatte;Weihua Zhou;David J. Hill;Behrooz Bahrani
{"title":"Grid-Forming Inverters: A Comparative Study of Different Control Strategies in Frequency and Time Domains","authors":"Nabil Mohammed;Harith Udawatte;Weihua Zhou;David J. Hill;Behrooz Bahrani","doi":"10.1109/OJIES.2024.3371985","DOIUrl":"10.1109/OJIES.2024.3371985","url":null,"abstract":"Grid-forming inverters (GFMIs) are anticipated to play a leading role in future power systems. In contrast to their counterpart grid-following inverters, which employ phase-locked loops for synchronization with the grid voltage and rely on stable grid connections, GFMIs primarily employ the power-based synchronization concept to form the voltage. Hence, they can not only stably operate in regions of the grid characterized by low strength but also provide critical ancillary services to power systems, including voltage, frequency, and inertia support. Several control strategies have been employed for GFMIs, making it crucial to comprehend their stability characteristics for the analysis of small-signal stability and low-frequency oscillations. This article examines the performance of GFMIs when equipped with four different control strategies, namely, droop-based GFMI, virtual synchronous generator (VSG)-based GFMI, compensated generalized VSG (CGVSG)- based GFMI, and adaptive VSG (AVSG)-based GFMI. The comparative analysis assesses the performance and robustness of these four control strategies across various operational scenarios in frequency and time domains. Initially, the impedance-based stability analysis method is employed to evaluate these control strategies across different case studies in terms of grid strengths, grid impedance ratios, the dynamics with/without virtual impedance and inner voltage and current loops, and variations in the inverter's operating points. Subsequently, time-domain verification using the electromagnetic transient models is conducted for these case studies as well as to assess the power tracking capability of these control strategies in response to changes in power references. Finally, the robustness of these four controllers is explored against external grid disturbances, including grid frequency deviations, phase jumps, and voltage sags, considering varying levels of disturbance magnitudes in both weak and strong grid connections. In conclusion, the evaluation of these control techniques in various operational scenarios reveals their strengths and weaknesses, offering valuable guidance for the selection of the most appropriate control technique to suit desired practical applications.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"5 ","pages":"185-214"},"PeriodicalIF":8.5,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10457945","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140044124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Scalable Real-Time SDN-Based MQTT Framework for Industrial Applications","authors":"E. Shahri;P. Pedreiras;L. Almeida","doi":"10.1109/OJIES.2024.3373232","DOIUrl":"10.1109/OJIES.2024.3373232","url":null,"abstract":"The increasing prominence of concepts such as Smart Production and Industrial Internet of Things (IIoT) within the context of Industry 4.0 has introduced a new set of requirements for the engineering of industrial systems, including support for dynamic environments, timeliness guarantees, support for heterogeneity, interoperability and reliability. These requirements are further exacerbated at the network level by the notable rise in the number and variety of devices involved. To stay competitive in this ever-changing industrial landscape while boosting productivity, it is vital to meet those requirements, combining established protocols with emerging technologies. Software-Defined Networking (SDN) is the forefront traffic management paradigm that offers flexibility for complex industrial networks, enabling efficient resource allocation and dynamic reconfiguration. Message Queuing Telemetry Transport (MQTT) is a low-overhead protocol of the application layer that is gaining popularity in the scope of the IoT and IIoT. However, its Quality-of-Service (QoS) policies do not support timeliness requirements. This article presents a framework that seamlessly integrates SDN and MQTT, enhancing network management flexibility while satisfying real-time requirements found in industrial environments. It leverages the User Properties of MQTTv5 to allow specifying real-time requirements. MQTT traffic is intercepted by a Network Manager that extracts real-time information and instructs an SDN controller to deploy corresponding network reservations. MQTT traffic across multiple edge networks is propagated by selected brokers using multicasting. Extensive experiments validate the proposed approach, demonstrating its superiority over MQTT and Direct Multicast-MQTT (DM-MQTT) DM-MQTT in latency reduction. A response time analysis, validated experimentally, emphasizes robust performance across metrics.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"5 ","pages":"215-235"},"PeriodicalIF":8.5,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10460326","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140044060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"End-Edge Collaborative Lightweight Secure Federated Learning for Anomaly Detection of Wireless Industrial Control Systems","authors":"Chi Xu;Xinyi Du;Lin Li;Xinchun Li;Haibin Yu","doi":"10.1109/OJIES.2024.3370496","DOIUrl":"10.1109/OJIES.2024.3370496","url":null,"abstract":"With the wide applications of industrial wireless network technologies, the industrial control system (ICS) is evolving from wired and centralized to wireless and distributed, during which eavesdropping and attacking become serious problems. To guarantee the security of wireless and distributed ICS, this article establishes an end-edge collaborative lightweight secure federated learning (LSFL) architecture and proposes an LSFL anomaly detection strategy. Specifically, we first design a residual multihead self-attention convolutional neural network for local feature learning, where the variability and dependence of spatial-temporal features can be sufficiently evaluated. Then, to reduce the wireless communication cost for parameter exchange and edge federal learning, we propose a dynamic parameter pruning algorithm by evaluating the contribution of each parameter based on the information entropy gain. Furthermore, to ensure the parameter security during wireless transmission in the open radio environment, we propose an adaptive key generation algorithm for parameter encryption. Finally, the proposed strategy is experimentally validated on representative datasets, including Smart Meter, NSL-KDD, and UNSW-NB15. Experimental results demonstrate that the proposed strategy achieves 99% accuracy on different datasets, where at least 89.6% wireless communication cost is reduced and tampering/injecting attacks are defended.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"5 ","pages":"132-142"},"PeriodicalIF":8.5,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10449459","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140010553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mateus Nava Mezaroba;Carlos Henrique Illa Font;Telles Brunelli Lazzarin
{"title":"Single-Phase Voltage-Doubler High-Power-Factor Ćuk Rectifier Operating in Discontinuous Conduction Mode","authors":"Mateus Nava Mezaroba;Carlos Henrique Illa Font;Telles Brunelli Lazzarin","doi":"10.1109/OJIES.2024.3369878","DOIUrl":"10.1109/OJIES.2024.3369878","url":null,"abstract":"This article provides a comprehensive analysis, including static, dynamic, and experimental validation, of a voltage-doubler Ćuk rectifier operating in the discontinuous conduction mode (DCM) for single-phase applications. The proposed topology integrates two classic Ćuk rectifiers through a three-position switch, allowing for either a doubled output voltage or reduced voltage efforts compared to the conventional topology. The voltage gain is increased while maintaining the step-up/step-down characteristic of the Ćuk family, and power components are activated only in a half cycle of the electrical grid, thus reducing the current efforts in the semiconductors. These features make the Ćuk converter suitable for higher voltage applications. The proposed topology is analyzed in DCM, where a high power factor is naturally achieved without a current control loop. An experimental prototype of 1 kW is built to verify the theoretical analysis, and the results show an efficiency of 94.68% with an input current total harmonic distortion of 1.86% at a rated power, including an output voltage control loop. Furthermore, the proposed topology is compared to the conventional Ćuk rectifier, both operating in DCM and with power factor correction.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"5 ","pages":"155-169"},"PeriodicalIF":8.5,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10444898","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139977388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}